Question and Answers Forum |
IntegrationQuestion and Answers: Page 149 |
given f(x) = f(x+(π/6)) ∀x∈R if ∫_0 ^(π/6) f(x)dx = T then ∫_π ^(7π/3) f(x+π) dx ? |
∫ ((x dx)/((cot x+tan x)^2 )) = (a) (x/(16))−((x sin 4x)/(32))−((cos 4x)/(128))+c (b) (x/(16))+((x sin 4x)/(32))−((cos 4x)/(128))+c (c) (x/(16))+((xsin 4x)/(64))+((cos 4x)/(128))+c (d)(x/(16))+((xcos 4x)/(32))+((sin 4x)/(128))+c |
∫ (dx/((√x) ((x)^(1/4) +1))) =__ (a) −((9 (x)^(1/4) +1)/(18((x)^(1/4) +1)^9 )) + c (b) ((9 (x)^(1/4) +1)/(18((x)^(1/4) +1)^9 )) +c (c) −((9 (x)^(1/4) −1)/(18((x)^(1/4) +1)^9 )) +c (d) ((9 (x)^(1/4) +1)/(8((x)^(1/4) +1)^9 )) + c |
∫(x/((a^2 cosx+b^2 sinx)))dx |
∫ (x^2 +2x^4 +3x^6 )(√(1+x^2 +x^4 )) dx |
I(n)=∫_0 ^∞ ((ln x)/(cosh^n x ))dx is there a simpler way to calculat those values |
∫_0 ^1 x^(−x) dx |
∫_0 ^∞ (1/((1+x^2 )^6 )) dx ? |
∫x^(−x) dx |
∫_0 ^∞ (x^3 /(e^x +1))dx |
∫_0 ^1 sin(logx)dx |
∫_0 ^1 ((((1/2)−x) ln(1−x) dx)/(x^2 −x+1)) ? |
∫_0 ^1 logxlog(1−x)dx |
solve: (sin^2 (x)−y)dx−tan(x)dy=0 |
calculate A_n =∫_0 ^∞ ((cos(nx))/((1+x^2 )^n ))dx with n integr natural |
calculate ∫_(−∞) ^∞ ((xsin(2x))/((x^2 +x+1)^2 ))dx |
find ∫_0 ^∞ ((x^2 cosx)/((x^2 +x+2)^2 ))dx |
given 5x+12y = 60 min value of (√(x^2 +y^2 )) |
lim_(x→0) ((x^2 sin (x^(−4) ))/x) ? |
∫ (dθ/(2sin^2 θ−cos^2 θ)) ? |
∫ (dx/(x^3 +3x−5)) ? |
∫(e^x /((1+x^2 )^2 ))∙(x^3 −x^2 +x+1)dx |
∫ ((sin(x))/x) dx |
I=2∫_0 ^(1/(√2)) ((sin^(−1) (x))/x) dx −∫_0 ^1 ((tan^(−1) (x))/x)dx |
I=2∫_0 ^(1/(√2)) ((sin^(−1) (x))/x) dx −∫_0 ^1 ((tan^(−1) (x))/x) dx |
∫ (√(x+(√(x+(√(x+(√(x+(√(x+...)))))))))) dx |
Pg 144 Pg 145 Pg 146 Pg 147 Pg 148 Pg 149 Pg 150 Pg 151 Pg 152 Pg 153 |