Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 149

Question Number 108506    Answers: 1   Comments: 0

Question Number 108502    Answers: 1   Comments: 1

Question Number 108444    Answers: 1   Comments: 0

((bobhans)/(β⊝β)) I = ∫ ((sin 2x)/(a cos^2 x+b sin^2 x+c))

$$\:\:\:\:\:\frac{\boldsymbol{{bobhans}}}{\beta\circleddash\beta} \\ $$$${I}\:=\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{{a}\:\mathrm{co}{s}^{\mathrm{2}} {x}+{b}\:\mathrm{sin}\:^{\mathrm{2}} {x}+{c}} \\ $$

Question Number 108429    Answers: 1   Comments: 0

Question Number 108401    Answers: 2   Comments: 2

((bobhans)/(⋱⋰)) I=∫_0 ^(π/2) ln (a^2 cos^2 θ + b^2 sin^2 θ ) dθ ?

$$\:\:\:\frac{\boldsymbol{{bobhans}}}{\ddots\iddots} \\ $$$$\:{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{ln}\:\left({a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\:+\:{b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\:\right)\:{d}\theta\:?\: \\ $$

Question Number 108391    Answers: 5   Comments: 0

((∡ BeMath ∡)/▽) I = ∫_0 ^π ((x dx)/(1+sin x))

$$\:\:\:\frac{\measuredangle\:\mathcal{B}{e}\mathcal{M}{ath}\:\measuredangle}{\bigtriangledown} \\ $$$${I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:{dx}}{\mathrm{1}+\mathrm{sin}\:{x}} \\ $$

Question Number 108384    Answers: 3   Comments: 0

(1)∫ ((√(sin x))/( (√(sin x)) + (√(cos x)))) dx ? (2) (d^2 y/dx^2 )−2(dy/dx) +y = e^x

$$\left(\mathrm{1}\right)\int\:\frac{\sqrt{\mathrm{sin}\:{x}}}{\:\sqrt{\mathrm{sin}\:{x}}\:+\:\sqrt{\mathrm{cos}\:{x}}}\:{dx}\:? \\ $$$$\left(\mathrm{2}\right)\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{2}\frac{{dy}}{{dx}}\:+{y}\:=\:{e}^{{x}} \\ $$

Question Number 108382    Answers: 2   Comments: 1

((bobhans)/(⋰⋱)) ∫_(π/2) ^π ∣ cos x−sin x ∣ dx ?

$$\:\:\:\frac{\boldsymbol{{bobhans}}}{\iddots\ddots} \\ $$$$\:\underset{\pi/\mathrm{2}} {\overset{\pi} {\int}}\mid\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:\mid\:{dx}\:? \\ $$$$ \\ $$

Question Number 108325    Answers: 0   Comments: 1

((⊸JS⊸)/(−−−−)) ∫ (dx/(x^8 (x^2 +1))) = ?

$$\:\:\:\frac{\multimap{JS}\multimap}{−−−−} \\ $$$$\int\:\frac{{dx}}{{x}^{\mathrm{8}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:=\:? \\ $$

Question Number 108306    Answers: 0   Comments: 0

proof that ∫_(0) ^(π/4) ((sin^2 xcos^2 x)/((sin^3 x+cos^3 x)^2 )) dx =(1/6)

$$\mathrm{proof}\:\mathrm{that}\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\frac{{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}{\left({sin}^{\mathrm{3}} {x}+{cos}^{\mathrm{3}} {x}\right)^{\mathrm{2}} }\:{dx}\:=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Question Number 108305    Answers: 0   Comments: 0

proof that∫_(−∞) ^∞ (dx/((x^2 +ax+a^2 )(x^2 +bx+b^2 ))) equals ((2π(a+b))/((√)3ab(a^2 +ab+b^2 ))).

$${proof}\:{that}\underset{−\infty} {\overset{\infty} {\int}}\frac{{dx}}{\left({x}^{\mathrm{2}} +{ax}+{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{bx}+{b}^{\mathrm{2}} \right)}\:{equals}\:\:\frac{\mathrm{2}\pi\left(\mathrm{a}+\mathrm{b}\right)}{\sqrt{}\mathrm{3ab}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{ab}+\mathrm{b}^{\mathrm{2}} \right)}. \\ $$

Question Number 108303    Answers: 1   Comments: 0

∫_0 ^(π/4) (1/((sinx+cosx)))sin^6 x dx equals

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\frac{\mathrm{1}}{\left({sinx}+{cosx}\right)}{sin}^{\mathrm{6}} {x}\:{dx}\:{equals} \\ $$

Question Number 108285    Answers: 0   Comments: 0

What is the nature of the integral ∫_1 ^∞ ((t^5 +3t+1)/(t^3 +100))e^(−t) dt

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{t}^{\mathrm{5}} +\mathrm{3t}+\mathrm{1}}{\mathrm{t}^{\mathrm{3}} +\mathrm{100}}\mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$

Question Number 108283    Answers: 1   Comments: 0

Given the function Γ defined by Γ(x)=∫_0 ^(+∞) t^(x−1) e^(−t) dt 1. What is the domain of definition of Γ ? 2. Show that ∀x∈ DΓ, xΓ(x)=Γ(x+1) and deduce the value of Γ(n), n∈N^∗ 3. Assuming ∫_0 ^(+∞) e^(−u^2 ) =((√π)/2), calculate Γ((1/2)) and deduce that Γ(n+(1/2))=(((2n)!(√π))/(2^2^n n!))

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:\Gamma\:\mathrm{defined}\:\mathrm{by}\:\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{+\infty} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\mathrm{1}.\:\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{definition}\:\mathrm{of}\:\Gamma\:? \\ $$$$\mathrm{2}.\:\:\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\:\mathrm{D}\Gamma,\:\mathrm{x}\Gamma\left(\mathrm{x}\right)=\Gamma\left(\mathrm{x}+\mathrm{1}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\Gamma\left(\mathrm{n}\right),\:\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{3}.\:\:\mathrm{Assuming}\:\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} } =\frac{\sqrt{\pi}}{\mathrm{2}},\:\mathrm{calculate}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that} \\ $$$$\:\:\:\:\:\Gamma\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\left(\mathrm{2n}\right)!\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}^{\mathrm{n}} } \mathrm{n}!} \\ $$

Question Number 108282    Answers: 0   Comments: 0

Determine the nature of the integral ∫_2 ^(+∞) (√(t^2 +3t)) ln(cos((1/t))) sin^2 ((1/(ln(t))))dt

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{3t}}\:\mathrm{ln}\left(\mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{t}}\right)\right)\:\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{t}\right)}\right)\mathrm{dt} \\ $$

Question Number 108175    Answers: 1   Comments: 3

Question Number 108169    Answers: 1   Comments: 0

((✓BeMath✓)/(≻≺)) ∫ ((x^5 −x)/(x^8 −1)) dx ?

$$\:\:\:\:\:\:\frac{\checkmark\mathcal{B}{e}\mathcal{M}{ath}\checkmark}{\succ\prec} \\ $$$$\int\:\frac{{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{8}} −\mathrm{1}}\:{dx}\:? \\ $$

Question Number 108144    Answers: 0   Comments: 0

∫ (√(ln(x)))dx

$$\int\:\sqrt{{ln}\left({x}\right)}{dx} \\ $$

Question Number 108099    Answers: 3   Comments: 1

((★BeMath⊚)/⊓) (1) ∫ x tan^(−1) (x) dx ? (2) Find the distance of the point (3,3,1) from the plane Π with equation (r^→ −i^→ −j^→ )•(i^→ −j^→ +k^→ ) = 0 , also find the point on the plane that is nearest to (3,3,1).

$$\:\:\:\:\frac{\bigstar\mathcal{B}{e}\mathcal{M}{ath}\circledcirc}{\sqcap} \\ $$$$\:\left(\mathrm{1}\right)\:\int\:{x}\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:{dx}\:? \\ $$$$\left(\mathrm{2}\right)\:{Find}\:{the}\:{distance}\:{of}\:{the}\:{point}\: \\ $$$$\left(\mathrm{3},\mathrm{3},\mathrm{1}\right)\:{from}\:{the}\:{plane}\:\Pi\:{with}\:{equation} \\ $$$$\left(\overset{\rightarrow} {{r}}−\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}\right)\bullet\left(\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}+\overset{\rightarrow} {{k}}\right)\:=\:\mathrm{0}\:,\:{also}\: \\ $$$${find}\:{the}\:{point}\:{on}\:{the}\:{plane}\:{that}\:{is} \\ $$$${nearest}\:{to}\:\left(\mathrm{3},\mathrm{3},\mathrm{1}\right). \\ $$$$ \\ $$

Question Number 108095    Answers: 3   Comments: 0

((∞BeMath∞)/♠) ∫ 2x cos^(−1) (x) dx

$$\:\:\:\frac{\infty\mathcal{B}{e}\mathcal{M}{ath}\infty}{\spadesuit} \\ $$$$\:\:\:\int\:\mathrm{2}{x}\:\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\:{dx}\: \\ $$

Question Number 108076    Answers: 0   Comments: 0

can someone please show how to get ∫_0 ^π sin (a sin (x)) dx=πH_0 (a) where H_0 (a) is the Struve−H−Function

$$\mathrm{can}\:\mathrm{someone}\:\mathrm{please}\:\mathrm{show}\:\mathrm{how}\:\mathrm{to}\:\mathrm{get} \\ $$$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:\left({a}\:\mathrm{sin}\:\left({x}\right)\right)\:{dx}=\pi\mathrm{H}_{\mathrm{0}} \:\left({a}\right) \\ $$$$\mathrm{where}\:\mathrm{H}_{\mathrm{0}} \:\left({a}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{Struve}−\mathrm{H}−\mathrm{Function} \\ $$

Question Number 108073    Answers: 3   Comments: 0

((≜BeMath≜)/≺) ∫ ((x dx)/(x^8 −1)) ?

$$\:\:\:\:\frac{\triangleq\mathcal{B}{e}\mathcal{M}{ath}\triangleq}{\prec} \\ $$$$\:\:\int\:\frac{{x}\:{dx}}{{x}^{\mathrm{8}} −\mathrm{1}}\:? \\ $$

Question Number 107965    Answers: 2   Comments: 0

((⊚BeMath⊚)/) ∫ x (√(x/(2a−x))) dx ?

$$\:\:\:\:\frac{\circledcirc\mathcal{B}{e}\mathcal{M}{ath}\circledcirc}{} \\ $$$$\int\:{x}\:\sqrt{\frac{{x}}{\mathrm{2}{a}−{x}}}\:{dx}\:?\: \\ $$

Question Number 107877    Answers: 0   Comments: 0

Question Number 107859    Answers: 0   Comments: 0

find A_n =∫_0 ^1 x^n (√(1+x+x^2 ))dx (n natural)

$$\mathrm{find}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{n}\:\mathrm{natural}\right) \\ $$

Question Number 107858    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((ln(1+x^2 ))/(1+x^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$

  Pg 144      Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com