Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 149
Question Number 109459 Answers: 0 Comments: 0
Question Number 109457 Answers: 3 Comments: 0
Question Number 109435 Answers: 1 Comments: 0
Question Number 109378 Answers: 4 Comments: 0
Question Number 109366 Answers: 0 Comments: 1
Question Number 109343 Answers: 2 Comments: 1
Question Number 109342 Answers: 0 Comments: 3
Question Number 109220 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{cos}\left(\mathrm{nx}\right)}{\mathrm{cosx}\:+\mathrm{sinx}}\mathrm{dx}\:\:\left(\mathrm{n}\rightarrow\mathrm{natural}\right) \\ $$
Question Number 109219 Answers: 0 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{sin}\left(\alpha\mathrm{x}\right)}{\mathrm{sinx}}\:\:\:\:\:,\:\mathrm{2}\pi\:\mathrm{periodi}\:\mathrm{even} \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 109218 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{2}+\mathrm{2t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$
Question Number 109215 Answers: 0 Comments: 1
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$
Question Number 109214 Answers: 1 Comments: 0
$$\mathrm{calculateA}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{n}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{2n}\right)}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\geqslant\mathrm{1} \\ $$
Question Number 109212 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{sin}\left(\mathrm{nx}\right)}{\mathrm{cosx}}\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr} \\ $$
Question Number 109136 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} \frac{{ln}\left(\mathrm{1}-{t}\right){ln}\left({t}\right)}{{t}}\:{dt} \\ $$$${I}'{m}\:{about}\:{to}\:{give}\:{up} \\ $$
Question Number 109129 Answers: 1 Comments: 0
$$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{tan}\:{x}}\:{dx} \\ $$
Question Number 109101 Answers: 3 Comments: 0
$$\:{Given}\:{a}\:{function}\:{f}\left({x}+\mathrm{3}\right)={f}\left({x}\right) \\ $$$${for}\:\forall{x}\in\mathbb{R}.\:{If}\:\underset{−\mathrm{3}} {\overset{\mathrm{6}} {\int}}{f}\left({x}\right){dx}\:=\:−\mathrm{6}\: \\ $$$${then}\:\underset{\mathrm{3}} {\overset{\mathrm{9}} {\int}}{f}\left({x}\right)\:{dx}\:=\:? \\ $$
Question Number 109097 Answers: 1 Comments: 0
$$\:\:\frac{\boldsymbol{\flat{o}\flat{hans}}}{\sim\sim\sim\sim\sim} \\ $$$$\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{x}\:\mathrm{sec}^{−\mathrm{1}} \left({x}\right){dx}=? \\ $$
Question Number 109086 Answers: 1 Comments: 0
$$\:\:\:\underset{\rightarrow} {\flat}\underset{\rightarrow} {{o}}\flat\underset{\multimap} {{h}an}\underset{\multimap} {{s}} \\ $$$$\left(\mathrm{1}\right)\:\left({x}^{\mathrm{2}} {e}^{−\frac{{y}}{{x}}} +{y}^{\mathrm{2}} \right)\:{dx}\:=\:{xy}\:{dy}\: \\ $$$$\left(\mathrm{2}\right)\left(\frac{{f}\left({x}\right)}{{x}}\right)'\:=\:{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } \:;\:{f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{1}}{{e}}\: \\ $$$$\:\:\:\:\:\:\:{g}\left({x}\right)\:=\:\frac{\mathrm{4}}{{e}^{\mathrm{4}} }\underset{\mathrm{1}} {\overset{{x}} {\int}}{e}^{{t}^{\mathrm{2}} } \:{f}\left({t}\right)\:{dt}\:.\:{find}\:{f}\left(\mathrm{2}\right)−{g}\left(\mathrm{2}\right) \\ $$
Question Number 109047 Answers: 1 Comments: 0
$$\int_{−\mathrm{2}} ^{\infty} \left({x}+\mathrm{2}\right)^{\mathrm{5}} {e}^{−\left({x}+\mathrm{2}\right)} {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tan}\left({x}\right)}{{x}}{dx} \\ $$
Question Number 108998 Answers: 0 Comments: 0
Question Number 108990 Answers: 2 Comments: 0
Question Number 108921 Answers: 3 Comments: 0
$$\mathrm{a}.\:\:\int\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{4x}}{\mathrm{cos}^{\mathrm{8}} \mathrm{4x}}\mathrm{dx} \\ $$$$\mathrm{b}.\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{cosx}} −\mathrm{2x}\right)\mathrm{sinxdx} \\ $$
Question Number 108908 Answers: 0 Comments: 0
Question Number 108954 Answers: 1 Comments: 5
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{E}{valuate}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}−{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} }\:{dxdy}=???\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\clubsuit\clubsuit\bigstar\bigstar \\ $$$$ \\ $$
Question Number 108893 Answers: 6 Comments: 0
$$\left(\mathrm{1}\right)\int\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\underset{−\mathrm{3}} {\overset{\mathrm{5}} {\int}}\sqrt{\mid{x}\mid^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}} {\int}}\:\mathrm{sin}\:\sqrt{{x}}\:{dx}\: \\ $$$$\left(\mathrm{4}\right)\:\underset{−\infty} {\overset{\infty} {\int}}{e}^{−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{3}} \:{dx}\: \\ $$$$\left(\mathrm{5}\right)\:{x}^{\mathrm{3}} {y}'''−\mathrm{2}{x}^{\mathrm{2}} {y}''−\mathrm{2}{xy}'+\mathrm{8}{y}=\mathrm{0} \\ $$$$\left(\mathrm{6}\right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right){dx}+\mathrm{2}{x}^{\mathrm{3}} {y}\:{dy}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{7}\right)\:\left(\mathrm{2}\sqrt{{xy}}−{y}\right){dx}−{xdy}\:=\:\mathrm{0} \\ $$
Question Number 108891 Answers: 1 Comments: 0
$$\:\:\:\frac{\boldsymbol{{bob}}\mathbb{H}{ans}}{\nparallel} \\ $$$$\int\:\frac{\left({x}^{\mathrm{2}} −\mathrm{2}\right)\:{dx}}{\left({x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}\right)\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}}\right)} \\ $$
Pg 144 Pg 145 Pg 146 Pg 147 Pg 148 Pg 149 Pg 150 Pg 151 Pg 152 Pg 153
Terms of Service
Privacy Policy
Contact: info@tinkutara.com