Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 149

Question Number 101461    Answers: 1   Comments: 0

Question Number 101451    Answers: 2   Comments: 1

Question Number 105239    Answers: 1   Comments: 0

Σ_(Σ_(p=5) ^6 p) ^(Σ_(p=8) ^(11) p) ∫_(11) ^(13) (((12ky)/x^2 ) + 6x) dx = Σ_(Σ_(p=4) ^7 p) ^(Σ_(p=9) ^(12) p) ∫_(11) ^(16) (x^2 y−(3/2)k)dx solve for y

$$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{16}} {\int}}\left({x}^{\mathrm{2}} {y}−\frac{\mathrm{3}}{\mathrm{2}}{k}\right){dx} \\ $$$${solve}\:{for}\:{y} \\ $$

Question Number 101378    Answers: 2   Comments: 1

∫_(1/e) ^(tanx) (t/(1+t^2 ))dt + ∫_(1/e) ^(cotx) (1/(t(1+t^2 )))dt

$$\int_{\frac{\mathrm{1}}{{e}}} ^{{tanx}} \frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:+\:\int_{\frac{\mathrm{1}}{{e}}} ^{{cotx}} \frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$

Question Number 101373    Answers: 0   Comments: 1

lim_(n→∞ ) Σ_(r=1) ^(4n) ((√n)/((√r)(3(√r)+4(√n))^2 ))

$$\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}{n}} {\sum}}\frac{\sqrt{{n}}}{\sqrt{{r}}\left(\mathrm{3}\sqrt{{r}}+\mathrm{4}\sqrt{{n}}\right)^{\mathrm{2}} } \\ $$

Question Number 101345    Answers: 0   Comments: 3

(1)∫ ((sec^4 x tan x)/(sec^4 x+4)) dx= (2) ∫x^(2x) (2lnx +2) dx = (3) ∫_0 ^1 (√(1−x^2 )) dx =

$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:\mathrm{tan}\:{x}}{\mathrm{sec}\:^{\mathrm{4}} {x}+\mathrm{4}}\:{dx}= \\ $$$$\left(\mathrm{2}\right)\:\int{x}^{\mathrm{2}{x}} \left(\mathrm{2ln}{x}\:+\mathrm{2}\right)\:{dx}\:= \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:=\: \\ $$

Question Number 101328    Answers: 0   Comments: 1

this i a beautifull old question in the forum by sir.Ali Esam i Reposted it trying to find any idea to solve I=∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x))))dx i solved it numerical the value is 2.03383

$${this}\:{i}\:{a}\:{beautifull}\:{old}\:{question}\:{in}\:{the}\:{forum} \\ $$$${by}\:{sir}.{Ali}\:{Esam}\:{i}\:{Reposted}\:{it}\:{trying}\:{to} \\ $$$${find}\:{any}\:{idea}\:{to}\:{solve} \\ $$$$ \\ $$$${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\frac{{sin}\left({x}\right)}{{sinh}^{−\mathrm{1}} \left({x}\right)}\right)\left(\frac{{sin}^{−\mathrm{1}} \left({x}\right)}{{sinh}\left({x}\right)}\right){dx} \\ $$$$ \\ $$$${i}\:{solved}\:{it}\:{numerical}\: \\ $$$${the}\:{value}\:{is}\:\mathrm{2}.\mathrm{03383} \\ $$

Question Number 101272    Answers: 1   Comments: 2

∫(√(sec x)) dx

$$\int\sqrt{\mathrm{sec}\:{x}}\:{dx}\: \\ $$

Question Number 101271    Answers: 0   Comments: 2

find ∫ ((xdx)/((√(x^2 +x+1))+(√(x^2 −x+1))))

$$\mathrm{find}\:\int\:\:\:\frac{\mathrm{xdx}}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}} \\ $$

Question Number 101270    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^2 (x+2)^2 (x+3)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 101269    Answers: 1   Comments: 0

calculate ∫_4 ^(+∞) (dx/((x−2)^5 (x+3)^7 ))

$$\mathrm{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{7}} } \\ $$

Question Number 101268    Answers: 1   Comments: 0

calculate ∫_(−∞) ^∞ ((cos(arctan(2x+1)))/(x^2 +2x+2))dx

$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{arctan}\left(\mathrm{2x}+\mathrm{1}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx} \\ $$

Question Number 101266    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^3 (x+2)^4 ))

$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$

Question Number 101286    Answers: 0   Comments: 3

∫(((x^m −x^n )^2 )/(√x))dx=?

$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)^{\mathrm{2}} }{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$

Question Number 101234    Answers: 0   Comments: 0

Show that the greatest integer function is Riemann integrable within all segments of R

$$\mathcal{S}\mathrm{how}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}\:\mathrm{is}\:\mathrm{Riemann} \\ $$$$\mathrm{integrable}\:\mathrm{within}\:\mathrm{all}\:\mathrm{segments}\:\mathrm{of}\:\mathbb{R} \\ $$

Question Number 101220    Answers: 1   Comments: 0

∫∫_D (√(x^2 +y^2 ))dxdy D= { (((x,y)∈R, x^2 +y^2 ≥2y, x^2 +y^2 ≤1)),((x≥0 , y≥0)) :}

$$\int\int_{\mathrm{D}} \sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy}\:\:\:\mathcal{D}=\begin{cases}{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \geqslant\mathrm{2y},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{1}}\\{\mathrm{x}\geqslant\mathrm{0}\:,\:\mathrm{y}\geqslant\mathrm{0}}\end{cases} \\ $$

Question Number 101285    Answers: 0   Comments: 1

∫(((x^m −x^n ))/(√x))dx=?

$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)}{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$

Question Number 101277    Answers: 2   Comments: 0

∫_0 ^1 (((x−1) dx )/((x+1)ln (x)))

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\left({x}−\mathrm{1}\right)\:{dx}\:}{\left({x}+\mathrm{1}\right)\mathrm{ln}\:\left({x}\right)} \\ $$$$ \\ $$

Question Number 101192    Answers: 1   Comments: 2

∫ (x/(1+sin x)) dx

$$\int\:\frac{{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx}\: \\ $$

Question Number 101178    Answers: 2   Comments: 0

∫ ((((√x)−x)^2 )/x^2 ) dx ?

$$\int\:\frac{\left(\sqrt{\mathrm{x}}−\mathrm{x}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$

Question Number 101073    Answers: 1   Comments: 0

∫_0 ^∞ ((sin(logx))/(logx))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({logx}\right)}{{logx}}{dx} \\ $$

Question Number 101057    Answers: 1   Comments: 0

Find the area bounded the curves f(x)= ∣x^3 −4x^2 +3x∣ and x−axis

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{the}\: \\ $$$$\mathrm{curves}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mid{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}{x}\mid\:\mathrm{and}\: \\ $$$$\mathrm{x}−\mathrm{axis}\: \\ $$

Question Number 101079    Answers: 2   Comments: 2

Question Number 101023    Answers: 0   Comments: 0

∫tan^(1/5) x cotx secxdx

$$\int{tan}^{\frac{\mathrm{1}}{\mathrm{5}}} {x}\:{cotx}\:{secxdx} \\ $$

Question Number 101014    Answers: 0   Comments: 0

Show that ∫_(−∞) ^(+∞) (dx/(1+(x+tanx)^2 )) = π

$${Show}\:{that} \\ $$$$\int_{−\infty} ^{+\infty} \frac{{dx}}{\mathrm{1}+\left({x}+{tanx}\right)^{\mathrm{2}} }\:\:\:=\:\:\:\pi \\ $$

Question Number 101011    Answers: 0   Comments: 5

∫_0 ^∞ ((sinx)/x)dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{dx} \\ $$

  Pg 144      Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com