Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 149
Question Number 101461 Answers: 1 Comments: 0
Question Number 101451 Answers: 2 Comments: 1
Question Number 105239 Answers: 1 Comments: 0
$$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{16}} {\int}}\left({x}^{\mathrm{2}} {y}−\frac{\mathrm{3}}{\mathrm{2}}{k}\right){dx} \\ $$$${solve}\:{for}\:{y} \\ $$
Question Number 101378 Answers: 2 Comments: 1
$$\int_{\frac{\mathrm{1}}{{e}}} ^{{tanx}} \frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:+\:\int_{\frac{\mathrm{1}}{{e}}} ^{{cotx}} \frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$
Question Number 101373 Answers: 0 Comments: 1
$$\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}{n}} {\sum}}\frac{\sqrt{{n}}}{\sqrt{{r}}\left(\mathrm{3}\sqrt{{r}}+\mathrm{4}\sqrt{{n}}\right)^{\mathrm{2}} } \\ $$
Question Number 101345 Answers: 0 Comments: 3
$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:\mathrm{tan}\:{x}}{\mathrm{sec}\:^{\mathrm{4}} {x}+\mathrm{4}}\:{dx}= \\ $$$$\left(\mathrm{2}\right)\:\int{x}^{\mathrm{2}{x}} \left(\mathrm{2ln}{x}\:+\mathrm{2}\right)\:{dx}\:= \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:=\: \\ $$
Question Number 101328 Answers: 0 Comments: 1
$${this}\:{i}\:{a}\:{beautifull}\:{old}\:{question}\:{in}\:{the}\:{forum} \\ $$$${by}\:{sir}.{Ali}\:{Esam}\:{i}\:{Reposted}\:{it}\:{trying}\:{to} \\ $$$${find}\:{any}\:{idea}\:{to}\:{solve} \\ $$$$ \\ $$$${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\frac{{sin}\left({x}\right)}{{sinh}^{−\mathrm{1}} \left({x}\right)}\right)\left(\frac{{sin}^{−\mathrm{1}} \left({x}\right)}{{sinh}\left({x}\right)}\right){dx} \\ $$$$ \\ $$$${i}\:{solved}\:{it}\:{numerical}\: \\ $$$${the}\:{value}\:{is}\:\mathrm{2}.\mathrm{03383} \\ $$
Question Number 101272 Answers: 1 Comments: 2
$$\int\sqrt{\mathrm{sec}\:{x}}\:{dx}\: \\ $$
Question Number 101271 Answers: 0 Comments: 2
$$\mathrm{find}\:\int\:\:\:\frac{\mathrm{xdx}}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}} \\ $$
Question Number 101270 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 101269 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{7}} } \\ $$
Question Number 101268 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{arctan}\left(\mathrm{2x}+\mathrm{1}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx} \\ $$
Question Number 101266 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$
Question Number 101286 Answers: 0 Comments: 3
$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)^{\mathrm{2}} }{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$
Question Number 101234 Answers: 0 Comments: 0
$$\mathcal{S}\mathrm{how}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}\:\mathrm{is}\:\mathrm{Riemann} \\ $$$$\mathrm{integrable}\:\mathrm{within}\:\mathrm{all}\:\mathrm{segments}\:\mathrm{of}\:\mathbb{R} \\ $$
Question Number 101220 Answers: 1 Comments: 0
$$\int\int_{\mathrm{D}} \sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy}\:\:\:\mathcal{D}=\begin{cases}{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \geqslant\mathrm{2y},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{1}}\\{\mathrm{x}\geqslant\mathrm{0}\:,\:\mathrm{y}\geqslant\mathrm{0}}\end{cases} \\ $$
Question Number 101285 Answers: 0 Comments: 1
$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)}{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$
Question Number 101277 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\left({x}−\mathrm{1}\right)\:{dx}\:}{\left({x}+\mathrm{1}\right)\mathrm{ln}\:\left({x}\right)} \\ $$$$ \\ $$
Question Number 101192 Answers: 1 Comments: 2
$$\int\:\frac{{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx}\: \\ $$
Question Number 101178 Answers: 2 Comments: 0
$$\int\:\frac{\left(\sqrt{\mathrm{x}}−\mathrm{x}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$
Question Number 101073 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({logx}\right)}{{logx}}{dx} \\ $$
Question Number 101057 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{the}\: \\ $$$$\mathrm{curves}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mid{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}{x}\mid\:\mathrm{and}\: \\ $$$$\mathrm{x}−\mathrm{axis}\: \\ $$
Question Number 101079 Answers: 2 Comments: 2
Question Number 101023 Answers: 0 Comments: 0
$$\int{tan}^{\frac{\mathrm{1}}{\mathrm{5}}} {x}\:{cotx}\:{secxdx} \\ $$
Question Number 101014 Answers: 0 Comments: 0
$${Show}\:{that} \\ $$$$\int_{−\infty} ^{+\infty} \frac{{dx}}{\mathrm{1}+\left({x}+{tanx}\right)^{\mathrm{2}} }\:\:\:=\:\:\:\pi \\ $$
Question Number 101011 Answers: 0 Comments: 5
$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{dx} \\ $$
Pg 144 Pg 145 Pg 146 Pg 147 Pg 148 Pg 149 Pg 150 Pg 151 Pg 152 Pg 153
Terms of Service
Privacy Policy
Contact: info@tinkutara.com