Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 147

Question Number 111104    Answers: 2   Comments: 2

Question Number 111048    Answers: 0   Comments: 0

Question Number 111083    Answers: 2   Comments: 0

(√(bemath)) (1)∫ (dx/(3sin x+sin^3 x)) (2) lim_(x→∞) x(5^(1/x) −1) (3) find the asymptotes (x^2 /a^2 ) − (y^2 /b^2 ) = 1

$$\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{dx}}{\mathrm{3sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{x}}} \:−\mathrm{1}\right)\: \\ $$$$\left(\mathrm{3}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{asymptotes}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:=\:\mathrm{1}\: \\ $$

Question Number 111082    Answers: 1   Comments: 1

[∫_0 ^∞ JS dx ] ∫_0 ^(π/2) ((sin (x)(4+sin^2 (x)))/((4−sin^2 (x))^2 )) dx ?

$$\:\:\:\left[\int_{\mathrm{0}} ^{\infty} {JS}\:{dx}\:\right] \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{sin}\:\left({x}\right)\left(\mathrm{4}+\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)\right)}{\left(\mathrm{4}−\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)\right)^{\mathrm{2}} }\:{dx}\:? \\ $$

Question Number 111027    Answers: 0   Comments: 0

★((log _(JS) (farmer))/)★ (1)∫ ((tan (ln x)tan (ln ((x/2)))dx)/x) (2) sin (cos x) < cos (sin x) ; where 0≤x≤2π

$$\:\:\bigstar\frac{\mathrm{log}\:_{{JS}} \left({farmer}\right)}{}\bigstar \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{tan}\:\left(\mathrm{ln}\:{x}\right)\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{{x}}{\mathrm{2}}\right)\right){dx}}{{x}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{sin}\:\left(\mathrm{cos}\:{x}\right)\:<\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)\:;\:{where} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi \\ $$

Question Number 111025    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((x^2 ln(x))/((1+x)^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$

Question Number 111024    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((x^2 lnx)/((1+x^2 )^3 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{lnx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\mathrm{dx} \\ $$

Question Number 111010    Answers: 1   Comments: 0

∫e^x tanx dx

$$\int{e}^{{x}} \:{tanx}\:{dx} \\ $$

Question Number 111017    Answers: 2   Comments: 0

(√(bemath)) ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\int\:\frac{\mathrm{dx}}{\:\sqrt[{\mathrm{4}\:}]{\mathrm{4}−\sqrt[{\mathrm{3}\:}]{\mathrm{3}−\mathrm{2x}}}}\:? \\ $$

Question Number 110875    Answers: 4   Comments: 0

(1)∫_e ^e^e ((ln (x).ln (ln (x)))/x) dx ? (2)lim_(x→π/4) ((cosec^2 x−2)/(cot x−1)) (3) Given { ((xy=((16y−9x)/(45)))),(((4/( (√x)))−(3/( (√y))) = 5)) :} ⇒find 9(√(xy))

$$\left(\mathrm{1}\right)\underset{\mathrm{e}} {\overset{\mathrm{e}^{\mathrm{e}} } {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{x}\right).\mathrm{ln}\:\left(\mathrm{ln}\:\left(\mathrm{x}\right)\right)}{\mathrm{x}}\:\mathrm{dx}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\:\frac{\mathrm{cosec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}}{\mathrm{cot}\:\mathrm{x}−\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Given}\:\begin{cases}{\mathrm{xy}=\frac{\mathrm{16y}−\mathrm{9x}}{\mathrm{45}}}\\{\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}}}−\frac{\mathrm{3}}{\:\sqrt{\mathrm{y}}}\:=\:\mathrm{5}}\end{cases} \\ $$$$\Rightarrow\mathrm{find}\:\mathrm{9}\sqrt{\mathrm{xy}} \\ $$

Question Number 110800    Answers: 0   Comments: 0

∫((sin(x))/(x^2 +1))dx

$$\int\frac{{sin}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 110772    Answers: 0   Comments: 0

lim_(n→∞) (1+Σ_(r=1) ^n (1/(3^r r!))Π_(k=1) ^r (2k−1))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{r}} {r}!}\underset{{k}=\mathrm{1}} {\overset{{r}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)\right) \\ $$

Question Number 110749    Answers: 1   Comments: 0

please evaluate : Ω=∫_0 ^( (1/2)) ((ln^2 (1−x))/x) dx=??? M.N.July 1970# .... Good luck....

$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:{please}\:{evaluate}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}\:{dx}=???\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{M}.\mathscr{N}.\mathscr{J}{uly}\:\mathrm{1970}# \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\mathscr{G}{ood}\:\:{luck}.... \\ $$$$ \\ $$$$ \\ $$

Question Number 118674    Answers: 1   Comments: 0

Please integrate ∫_0 ^1 (1/(1+x^c ))dx where c is a constant.

$${Please}\:{integrate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} }{dx}\:{where}\:{c}\:{is}\:{a}\:{constant}. \\ $$

Question Number 110551    Answers: 2   Comments: 0

Question Number 110549    Answers: 2   Comments: 1

Question Number 110543    Answers: 1   Comments: 0

Question Number 110888    Answers: 3   Comments: 0

....calculus.... please solve : Ω_1 =∫_0 ^( (π/4)) ((√(tan(x))) +(√(cot(x))) )dx=?? Ω_2 =∫_0 ^(π/4) tan(x)ln((1+tan^2 (x)))dx =?? ...M.N.july 1970#... Good luck

$$\:\:\:\:\:\:\:\:\:\:....{calculus}.... \\ $$$${please}\:{solve}\:: \\ $$$$ \\ $$$$\Omega_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \left(\sqrt{{tan}\left({x}\right)}\:+\sqrt{{cot}\left({x}\right)}\:\right){dx}=?? \\ $$$$\:\Omega_{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}\left({x}\right){ln}\left(\left(\mathrm{1}+{tan}^{\mathrm{2}} \left({x}\right)\right)\right){dx}\:=?? \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:...\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}#... \\ $$$$\:\mathscr{G}{ood}\:{luck} \\ $$$$ \\ $$$$ \\ $$

Question Number 110451    Answers: 1   Comments: 0

calculate U_n =∫_([(1/n),n[^2 ) (x^2 −y^2 )e^(−x^2 −y^2 ) dxdy and lim_(n→+∞) U_n

$$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} } \mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$

Question Number 110450    Answers: 1   Comments: 0

find ∫∫_([0,1]^2 ) ln(x^2 +3y^2 ) e^(−x^2 −3y^2 ) dxdy

$$\mathrm{find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3y}^{\mathrm{2}} \right)\:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{3y}^{\mathrm{2}} } \:\mathrm{dxdy} \\ $$

Question Number 110448    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) ((cos(2x))/((x^2 −4i)^3 ))dx (i=(√(−1)))

$$\mathrm{calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4i}\right)^{\mathrm{3}} }\mathrm{dx}\:\:\:\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$

Question Number 110447    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −ix +1)^2 )) (i=(√(−1)))

$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{ix}\:+\mathrm{1}\right)^{\mathrm{2}} }\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$

Question Number 110301    Answers: 0   Comments: 1

Question Number 110262    Answers: 0   Comments: 0

Solve for X(x,y,z), Y(x,y,z), Z(x,y,z) { (((∂Z/∂y)−(∂Y/∂z)=1−x^2 )),(((∂Z/∂x)−(∂X/∂z)=−(y^2 /2))),(((∂Y/∂x)−(∂X/∂y)=z(2x−y))) :} where { ((X(x,y,0)=0)),((Y(x,y,0)=0)),((Z(x,y,0)=0)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$$$\begin{cases}{\frac{\partial\mathrm{Z}}{\partial\mathrm{y}}−\frac{\partial\mathrm{Y}}{\partial\mathrm{z}}=\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\\{\frac{\partial\mathrm{Z}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{z}}=−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\partial\mathrm{Y}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{y}}=\mathrm{z}\left(\mathrm{2x}−\mathrm{y}\right)}\end{cases}\:\mathrm{where}\:\begin{cases}{\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\end{cases} \\ $$

Question Number 110247    Answers: 1   Comments: 0

Let f(x) = ∫_0 ^( x) e^(−t) dt then f ′′(x) = ??

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\:{x}} {e}^{−{t}} {dt}\: \\ $$$$\mathrm{then}\:{f}\:''\left({x}\right)\:=\:?? \\ $$

Question Number 110245    Answers: 1   Comments: 2

solve ∫(dx/( ((c−(√(b−ax))))^(1/3) ))

$${solve}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{c}−\sqrt{{b}−{ax}}}} \\ $$

  Pg 142      Pg 143      Pg 144      Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com