Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 147
Question Number 112613 Answers: 1 Comments: 2
$$\:\:\:\:\:....{number}\:{theory}... \\ $$$$\:\:\:\:\:\:\:{Question}\::\:\:\:\:\:\:\mathrm{I}{f}\:\:\:{a}\:,\:{b}\:,\:{c}\:\:\in\:\mathbb{N}\:\:\:;\:{then}\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}!\ast{b}!\ast{c}!\mid\left({a}+{b}+{c}\right)!\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}\:.\:{july}\:\mathrm{970}# \\ $$
Question Number 112579 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:....\:{calculus}\:.... \\ $$$$\mathscr{P}{lease}\:\:\mathscr{E}{valuate}\:::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{{x}}{{sin}\left({x}\right)}\right)^{\mathrm{2}} {dx}\:=???\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}# \\ $$$$\: \\ $$
Question Number 112520 Answers: 0 Comments: 0
$$\int\frac{\sqrt[{\mathrm{3}}]{{cos}\left({x}\right)}}{{cos}\left({x}\right)}{dx} \\ $$
Question Number 112498 Answers: 0 Comments: 0
$$\int\frac{{ln}\left(\mathrm{1}+{x}\right){dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$
Question Number 112481 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{sin}\:\mathrm{2x}}{\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}}\:\mathrm{dx}\: \\ $$
Question Number 112447 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx} \\ $$
Question Number 112446 Answers: 2 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$
Question Number 112449 Answers: 3 Comments: 3
$$\left.\mathrm{1}\right)\mathrm{calculste}\:\:\mathrm{A}=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{ix}\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{extract}\:\mathrm{Re}\left(\mathrm{A}\right)\:\mathrm{and}\:\mathrm{Im}\left(\mathrm{A}\right)\:\mathrm{and}\:\mathrm{determines}\:\mathrm{its}\:\mathrm{values} \\ $$
Question Number 112381 Answers: 0 Comments: 0
$$\int{sin}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$
Question Number 112271 Answers: 2 Comments: 0
$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\:\int\:\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$
Question Number 112251 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Question Number 112249 Answers: 2 Comments: 1
$$\int\frac{{dx}}{\left(\alpha{x}^{\mathrm{2}} +{px}+\beta\right)\sqrt{\alpha{x}^{\mathrm{2}} +{qx}+\beta}}=? \\ $$
Question Number 112206 Answers: 0 Comments: 0
$$\int{ln}\left({sin}\left({x}\right)\right)\:{dx} \\ $$
Question Number 112189 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{cos}\left({x}\right)+{sinh}\left({x}\right)}{dx}=\mathrm{1}.\mathrm{4917}. \\ $$
Question Number 112169 Answers: 2 Comments: 0
$$\:\int\:\mathrm{tan}\:^{\mathrm{3}} {x}\:\mathrm{sec}\:^{\mathrm{3}} {x}\:{dx}\:? \\ $$
Question Number 112119 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:....{calculus}.... \\ $$$${prove}\:{that}::: \\ $$$${if}\:\:\:\Omega\:=\int_{\mathrm{0}\:\:} ^{\:\mathrm{1}} {ln}\left({ln}\left(\mathrm{1}−\sqrt{{x}}\:\right)\right){dx} \\ $$$${then} \\ $$$$\mathscr{R}{e}\left(\Omega\right)\::=\:−\gamma\:+\:{ln}\left(\mathrm{2}\right).... \\ $$$$ \\ $$$${m}.{n}.\:{july}\:\mathrm{1970}# \\ $$
Question Number 112545 Answers: 2 Comments: 2
$$\:\:\:\:{please}\:{solve}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xlog}^{\mathrm{2}} \left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right){dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:...{m}.{n}.{july}\:\mathrm{1970}.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{good}\:\:\:{luck}\:. \\ $$$$ \\ $$
Question Number 111876 Answers: 0 Comments: 0
Question Number 111873 Answers: 1 Comments: 0
$$\:\:\:\sqrt{{bemath}} \\ $$$$\int\:\frac{\mathrm{2}−\mathrm{cos}\:{x}}{\mathrm{2}+\mathrm{cos}\:{x}}\:{dx}\: \\ $$
Question Number 111859 Answers: 2 Comments: 7
$${I}=\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{3}}}\:=\:? \\ $$$${my}\:{try}.. \\ $$
Question Number 111818 Answers: 3 Comments: 0
$$\:\:\:\sqrt{{bemath}\:} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{cos}\:{x}}{\mathrm{2}−\mathrm{cos}\:{x}}\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\:{f}\left({x}\right)\:=\:\mid{x}^{\mathrm{3}} \mid\:\Rightarrow\:{f}\:'\left({x}\right)\:? \\ $$
Question Number 111771 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{a}_{\mathrm{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \mathrm{sin}\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{a}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{sin}\left(\frac{\pi\mathrm{k}}{\mathrm{2n}}\right) \\ $$
Question Number 111770 Answers: 0 Comments: 0
$$\mathrm{f}\:\mathrm{function}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]\:\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \left(\mathrm{n}−\mathrm{k}\right)\int_{\frac{\mathrm{k}}{\mathrm{n}}} ^{\frac{\mathrm{k}+\mathrm{1}}{\mathrm{n}}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 111768 Answers: 0 Comments: 0
$$\mathrm{explicite}\:\mathrm{f}\left(\mathrm{x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)\mathrm{d}\theta\:\:\:\:\:\:\:\:\left(\mathrm{x}\neq\overset{−} {+}\mathrm{1}\right) \\ $$
Question Number 111762 Answers: 1 Comments: 0
$$\mathrm{caoculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{2tanx}\right)\mathrm{dx} \\ $$
Question Number 111760 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\:\int_{\mathrm{x}} ^{\mathrm{x}^{\mathrm{2}} } \:\:\frac{\mathrm{ln}\left(\mathrm{t}\right)}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Pg 142 Pg 143 Pg 144 Pg 145 Pg 146 Pg 147 Pg 148 Pg 149 Pg 150 Pg 151
Terms of Service
Privacy Policy
Contact: info@tinkutara.com