Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 147

Question Number 110551    Answers: 2   Comments: 0

Question Number 110549    Answers: 2   Comments: 1

Question Number 110543    Answers: 1   Comments: 0

Question Number 110888    Answers: 3   Comments: 0

....calculus.... please solve : Ω_1 =∫_0 ^( (π/4)) ((√(tan(x))) +(√(cot(x))) )dx=?? Ω_2 =∫_0 ^(π/4) tan(x)ln((1+tan^2 (x)))dx =?? ...M.N.july 1970#... Good luck

$$\:\:\:\:\:\:\:\:\:\:....{calculus}.... \\ $$$${please}\:{solve}\:: \\ $$$$ \\ $$$$\Omega_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \left(\sqrt{{tan}\left({x}\right)}\:+\sqrt{{cot}\left({x}\right)}\:\right){dx}=?? \\ $$$$\:\Omega_{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}\left({x}\right){ln}\left(\left(\mathrm{1}+{tan}^{\mathrm{2}} \left({x}\right)\right)\right){dx}\:=?? \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:...\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}#... \\ $$$$\:\mathscr{G}{ood}\:{luck} \\ $$$$ \\ $$$$ \\ $$

Question Number 110451    Answers: 1   Comments: 0

calculate U_n =∫_([(1/n),n[^2 ) (x^2 −y^2 )e^(−x^2 −y^2 ) dxdy and lim_(n→+∞) U_n

$$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} } \mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$

Question Number 110450    Answers: 1   Comments: 0

find ∫∫_([0,1]^2 ) ln(x^2 +3y^2 ) e^(−x^2 −3y^2 ) dxdy

$$\mathrm{find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3y}^{\mathrm{2}} \right)\:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{3y}^{\mathrm{2}} } \:\mathrm{dxdy} \\ $$

Question Number 110448    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) ((cos(2x))/((x^2 −4i)^3 ))dx (i=(√(−1)))

$$\mathrm{calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4i}\right)^{\mathrm{3}} }\mathrm{dx}\:\:\:\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$

Question Number 110447    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −ix +1)^2 )) (i=(√(−1)))

$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{ix}\:+\mathrm{1}\right)^{\mathrm{2}} }\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$

Question Number 110301    Answers: 0   Comments: 1

Question Number 110262    Answers: 0   Comments: 0

Solve for X(x,y,z), Y(x,y,z), Z(x,y,z) { (((∂Z/∂y)−(∂Y/∂z)=1−x^2 )),(((∂Z/∂x)−(∂X/∂z)=−(y^2 /2))),(((∂Y/∂x)−(∂X/∂y)=z(2x−y))) :} where { ((X(x,y,0)=0)),((Y(x,y,0)=0)),((Z(x,y,0)=0)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$$$\begin{cases}{\frac{\partial\mathrm{Z}}{\partial\mathrm{y}}−\frac{\partial\mathrm{Y}}{\partial\mathrm{z}}=\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\\{\frac{\partial\mathrm{Z}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{z}}=−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\partial\mathrm{Y}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{y}}=\mathrm{z}\left(\mathrm{2x}−\mathrm{y}\right)}\end{cases}\:\mathrm{where}\:\begin{cases}{\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\end{cases} \\ $$

Question Number 110247    Answers: 1   Comments: 0

Let f(x) = ∫_0 ^( x) e^(−t) dt then f ′′(x) = ??

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\:{x}} {e}^{−{t}} {dt}\: \\ $$$$\mathrm{then}\:{f}\:''\left({x}\right)\:=\:?? \\ $$

Question Number 110245    Answers: 1   Comments: 2

solve ∫(dx/( ((c−(√(b−ax))))^(1/3) ))

$${solve}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{c}−\sqrt{{b}−{ax}}}} \\ $$

Question Number 110233    Answers: 0   Comments: 0

Question Number 110218    Answers: 1   Comments: 0

Question Number 110215    Answers: 1   Comments: 1

Question Number 110203    Answers: 1   Comments: 0

Question Number 110143    Answers: 2   Comments: 0

Question Number 110027    Answers: 2   Comments: 0

Question Number 109989    Answers: 1   Comments: 1

Question Number 109988    Answers: 0   Comments: 0

Question Number 109949    Answers: 1   Comments: 0

Question Number 109891    Answers: 1   Comments: 0

((Δbe▽)/(math)) ∫ ((arc tan x)/((1+(1/x^2 )))) dx ?

$$\:\:\frac{\Delta{be}\bigtriangledown}{{math}} \\ $$$$\int\:\frac{\mathrm{arc}\:\mathrm{tan}\:{x}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\:{dx}\:? \\ $$

Question Number 109884    Answers: 1   Comments: 1

Question Number 109872    Answers: 2   Comments: 1

((★be★)/(Math)) ∫ ((cos x dx)/(sin^2 x+4sin x−5)) ?

$$\:\:\frac{\bigstar{be}\bigstar}{\mathcal{M}{ath}} \\ $$$$\int\:\frac{\mathrm{cos}\:{x}\:{dx}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{4sin}\:{x}−\mathrm{5}}\:? \\ $$

Question Number 109849    Answers: 0   Comments: 0

Question Number 109839    Answers: 4   Comments: 1

((JS)/(≈♥≈)) (1) ∫ (((√(x+1))−(√(x−1)))/( (√(x+1))+(√(x−1)))) dx (2) ∫ ((√(tan x))/(1+(√(tan x)) )) dx

$$\:\frac{{JS}}{\approx\heartsuit\approx} \\ $$$$\left(\mathrm{1}\right)\:\int\:\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}\:}\:{dx}\: \\ $$

  Pg 142      Pg 143      Pg 144      Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com