Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 136

Question Number 116249    Answers: 0   Comments: 0

find ∫_0 ^1 ((arctan(x^2 +3))/(x^2 +3))dx

$$\mathrm{find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}\mathrm{dx} \\ $$

Question Number 116248    Answers: 0   Comments: 0

calculate ∫_(−∞) ^∞ ((arctan(2+x^2 ))/(x^2 −x +1))dx

$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 116247    Answers: 0   Comments: 0

find the value of I =∫_0 ^∞ ((ch(cos(2x)))/(x^2 +9))dx and J =∫_0 ^∞ ((cos(ch(2x)))/(x^2 +9))dx

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ch}\left(\mathrm{cos}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx}\:\mathrm{and} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{ch}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx} \\ $$

Question Number 116245    Answers: 3   Comments: 0

calculate ∫_1 ^∞ (dx/((2x^2 −1)^5 ))

$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{2x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{5}} } \\ $$

Question Number 116237    Answers: 2   Comments: 0

∫ (√(5cos^2 x+4)) dx ?

$$\int\:\sqrt{\mathrm{5cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{4}}\:\mathrm{dx}\:? \\ $$

Question Number 116231    Answers: 1   Comments: 0

∫ sec x tan x (√(tan^2 x−3)) dx ?

$$\int\:\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{3}}\:\mathrm{dx}\:? \\ $$

Question Number 116216    Answers: 1   Comments: 0

∫_0 ^π ((ln (1+(1/2)cos x))/(cos x)) dx ?

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$

Question Number 116162    Answers: 1   Comments: 0

Σ_(n=0) ^∞ ((2n+1)/(16^n (n^2 +3n+2))) (((2n)),(n) )^2 =(8/(3π)) m.n.july 1970.

$$\:\: \\ $$$$ \\ $$$$\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{16}^{{n}} \left({n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\right)}\:\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \:=\frac{\mathrm{8}}{\mathrm{3}\pi}\: \\ $$$$ \\ $$$${m}.{n}.{july}\:\mathrm{1970}. \\ $$$$\: \\ $$

Question Number 116196    Answers: 6   Comments: 0

please solve : ∫_0 ^( (π/4)) tan^9 (x)dx =???

$$\:\:\:\:\:{please}\:{solve}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {tan}^{\mathrm{9}} \left({x}\right){dx}\:=??? \\ $$

Question Number 116112    Answers: 2   Comments: 0

show that ∫_( 0) ^( ∞) ((lnx)/(1+x^2 ))dx = 0

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\int_{\:\mathrm{0}} ^{\:\infty} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}\:=\:\mathrm{0} \\ $$$$ \\ $$

Question Number 116123    Answers: 0   Comments: 0

Study according to the values of the real α the convergence of the integral ∫_α ^(+∞) ((ln∣x∣)/( ((x(x+1)))^(1/3) ))dx

$$ \\ $$$$\mathrm{Study}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{real}\:\alpha\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{integral}\:\:\int_{\alpha} ^{+\infty} \frac{{ln}\mid{x}\mid}{\:\sqrt[{\mathrm{3}}]{{x}\left({x}+\mathrm{1}\right)}}{dx} \\ $$

Question Number 116098    Answers: 0   Comments: 0

1)calculate f(x)=∫_0 ^(2π) (dθ/(x^2 −2x cosθ +1)) 0<θ<(π/2) 2)explicite ∫_0 ^(2π) ((cosθ)/((x^2 −2xcosθ +1)^2 ))dθ

$$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{d}\theta}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}\:\mathrm{cos}\theta\:+\mathrm{1}}\:\:\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\mathrm{explicite}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{cos}\theta}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{d}\theta \\ $$

Question Number 116097    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((lnx)/(x^4 +1))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\mathrm{dx}\: \\ $$

Question Number 116096    Answers: 1   Comments: 0

find ∫_0 ^∞ ((lnx)/(x^2 −i))dx (i=(√(−1)))

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{i}}\mathrm{dx}\:\:\:\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$

Question Number 116016    Answers: 1   Comments: 0

∫_(−1) ^1 (dx/( (√(6+x−x^2 )))) ?

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{6}+{x}−{x}^{\mathrm{2}} }}\:? \\ $$

Question Number 116014    Answers: 1   Comments: 0

...nice calculus ... prove : i:∫_0 ^( ∞) ((ln(x))/((1+x^(√2) )^(√2) )) =0 ✓ ii: ∫_0 ^( ∞) (dx/((1+x^(1+(√2)) )^(1+(√2)) )) =(1/( (√2))) ✓ iii: ∫_0 ^( (π/2)) ln(x^2 +ln^2 (cos(x)))dx=πln(ln(2))✓ ... m.n. july.1970...

$$\:\:\:\:\:\:\:...{nice}\:\:{calculus}\:...\:\:\: \\ $$$$\:{prove}\:: \\ $$$$\:\:\:{i}:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{2}}} \right)^{\sqrt{\mathrm{2}}} }\:=\mathrm{0}\:\:\:\:\:\:\checkmark \\ $$$$\:\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{1}+\sqrt{\mathrm{2}}} \right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\checkmark\:\: \\ $$$$\:\:\:{iii}:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({x}^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({cos}\left({x}\right)\right)\right){dx}=\pi{ln}\left({ln}\left(\mathrm{2}\right)\right)\checkmark \\ $$$$\:\:\:\:\:\:\:...\:{m}.{n}.\:{july}.\mathrm{1970}... \\ $$$$ \\ $$

Question Number 116000    Answers: 0   Comments: 0

U(n)=∫_0 ^∞ ((1−tanh x)/( ((tanh x))^(1/n) ))dx another way?

$${U}\left({n}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{tanh}\:{x}}{\:\sqrt[{{n}}]{\mathrm{tanh}\:{x}}}{dx} \\ $$$${another}\:{way}? \\ $$$$ \\ $$

Question Number 115974    Answers: 0   Comments: 0

∫((e^(3x) −e^x )/(x(e^(3x) +1)(e^x +1)))dx = ?

$$\int\frac{{e}^{\mathrm{3}{x}} −{e}^{{x}} }{{x}\left({e}^{\mathrm{3}{x}} +\mathrm{1}\right)\left({e}^{{x}} +\mathrm{1}\right)}{dx}\:=\:? \\ $$

Question Number 115927    Answers: 2   Comments: 0

calculate ∫_1 ^(+∞) (dx/((4x^2 −1)^3 ))

$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{4x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 115920    Answers: 4   Comments: 0

prove that :: ∫_0 ^( ∞) (tanh^a (x) −tanh^b (x))dx =^(???) ((ψ(((b+1)/2))−ψ(((a+1)/2)))/2) m.n.july.1970

$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\: \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \left({tanh}^{{a}} \left({x}\right)\:−{tanh}^{{b}} \left({x}\right)\right){dx}\: \\ $$$$\:\:\:\:\:\:\overset{???} {=}\:\:\:\frac{\psi\left(\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$\: \\ $$

Question Number 115896    Answers: 2   Comments: 0

∫ ((sec^4 x dx)/( (√(tan^3 x)))) =?

$$\:\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:{dx}}{\:\sqrt{\mathrm{tan}\:^{\mathrm{3}} {x}}}\:=? \\ $$

Question Number 115781    Answers: 4   Comments: 0

∫_0 ^(1/( (√2))) ((x sin^(−1) (x^2 ))/( (√(1−x^4 )))) dx =? ∫2^(−x) tanh (2^(1−x) ) dx =?

$$\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {\int}}\:\frac{{x}\:\mathrm{sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx}\:=? \\ $$$$\int\mathrm{2}^{−{x}} \:\mathrm{tanh}\:\left(\mathrm{2}^{\mathrm{1}−{x}} \right)\:{dx}\:=? \\ $$

Question Number 115761    Answers: 2   Comments: 1

.... advanced calculus... ... evaluate ... Ψ= ∫_(−∞) ^( +∞) ((x/(2+2^(−x) +2^x )))^2 dx =??? m.n.july 70

$$\:\:\:\:\:\:....\:\:\:{advanced}\:\:{calculus}...\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:...\:\:\:{evaluate}\:...\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\:\int_{−\infty} ^{\:+\infty} \left(\frac{{x}}{\mathrm{2}+\mathrm{2}^{−{x}} +\mathrm{2}^{{x}} }\right)^{\mathrm{2}} {dx}\:=??? \\ $$$$\:{m}.{n}.{july}\:\mathrm{70} \\ $$$$ \\ $$

Question Number 115743    Answers: 3   Comments: 0

∫ e^(ax) .sin bx dx =? by complex number

$$\int\:{e}^{{ax}} .\mathrm{sin}\:{bx}\:{dx}\:=? \\ $$$${by}\:{complex}\:{number} \\ $$

Question Number 115725    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((lnx)/((x^(2 ) +x+2)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}^{\mathrm{2}\:} +{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 115689    Answers: 1   Comments: 0

  Pg 131      Pg 132      Pg 133      Pg 134      Pg 135      Pg 136      Pg 137      Pg 138      Pg 139      Pg 140   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com