I=∫_0 ^∞ ((lnx)/(x^2 +2x+4)) dx
put x+1=(√3) tanθ
I=∫_0 ^(π/2) ((ln((√3) tanθ−1))/(3(sec^2 θ))) (√3) sec^2 θdθ
I=(1/( (√3)))∫_0 ^(π/2) ln((√3)tanθ−1) dθ
I=(1/( (√3)))∫_0 ^(π/2) ln((√3)sinθ−cosθ)−lncosθ dθ
I=(1/( (√3)))∫_0 ^(π/2) ln(sin(θ−(π/6))+ln2−lncosθ dθ
A=∫_(−2) ^6 ∣g(x)∣ dx
⇒let g(p)=0⇒ f(0)=p=2
A=∫_(−2) ^2 −g(x) dx+∫_2 ^6 g(x) dx
⇒put x=f(t)
A=∫_(−1) ^0 −tf′(t) dt+∫_0 ^1 t f(t) dt
A=∫_(−1) ^0 −3t^3 −3t dt+∫_0 ^1 3t^3 +3t dt
A=2(((3t^4 )/4)+((3t^2 )/2))_0 ^1 =(9/2)
lnx=(1/x)⇒xlnx=1(let x=α)
∫_1 ^α (1/x)−lnx dx=∫_α ^a lnx−(1/x) dx
⇒lnx−xlnx+x]_1 ^α =xlnx−x−lnx]_α ^a
⇒lnα−1+α−1=alna−a−lna−1+α
+lnα
⇒alna−a−lna=−1
⇒alna−lna=a−1⇒a=e
s(t)=(1/2)∣OA^→ ×OB^→ ∣
s(t)=(1/2)∣(2,2,1)×(t,1,t+1)∣
s(t)=(1/2)∣(2t+1),(−2−t),(2−2t)∣
f(x)=(1/4)∫_0 ^x (2t+1)^2 +(t+2)^2 +(2−2t)^2 dt
f(x)=(1/4)∫_0 ^x 9t^2 +9 dt=((3x^3 +9x)/4)
A=(1/4)∫_0 ^6 (3x^3 +9x)dx=((3x^4 +18x^2 )/(16))]_0 ^6
A=((3.6^3 (6+1))/(16))=((567)/2)
|