Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 134

Question Number 120688    Answers: 1   Comments: 0

∫_0 ^π ((x dx)/(1+sin^2 x))

$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\: \\ $$$$ \\ $$

Question Number 120628    Answers: 0   Comments: 15

selective intregals

$${selective}\:{intregals} \\ $$

Question Number 120599    Answers: 0   Comments: 0

Let x = u^6 dx = 6u^5 du I = ∫(u^3 /((1+u^2 )^2 )) ×6u^5 du =6 ∫(u^8 /(1+2u^2 +u^4 )) du =6 ∫[((−4)/(u^2 +1))+(1/((1+u^2 )^2 ))+u^4 −2u^2 +3]du =6[−4tan^(−1) (u) + I_1 + (u^5 /5) − (2/3)u^3 +3u]+c I_1 = ∫(1/((1+u^2 )^2 )) du Put u = tan z du = sec^2 z dz I_1 = ∫(1/(sec^4 z))×sec^2 z dz = ∫cos^2 z dz = ∫(1/2)(cos 2z + 1)dz = (1/2)((1/2) sin 2z + z) = (1/2)×(u/(1+u^2 )) + (1/2) tan^(−1) u I = −4 tan^(−1) u + (u/(2(1+u^2 ))) + (1/2) tan^(−1) u +(u^5 /5) − (2/3)u^3 + 3u + c = −(7/2) tan^(−1) u + (u/(2(1+u^2 ))) + (1/5)u^5 + 3u + c = −(7/2) tan^(−1) ( ^6 (√x)) + ((x)^(1/6) /(2(1+(x^2 )^(1/6) ))) + (1/5) (x^5 )^(1/6) + 3 (x)^(1/6) + c

$${Let}\:{x}\:=\:{u}^{\mathrm{6}} \:\:\:\:\:\:\:\:\:{dx}\:=\:\mathrm{6}{u}^{\mathrm{5}} \:{du} \\ $$$${I}\:=\:\int\frac{{u}^{\mathrm{3}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:×\mathrm{6}{u}^{\mathrm{5}} \:{du} \\ $$$$\:\:\:=\mathrm{6}\:\int\frac{{u}^{\mathrm{8}} }{\mathrm{1}+\mathrm{2}{u}^{\mathrm{2}} +{u}^{\mathrm{4}} }\:{du} \\ $$$$\:\:\:=\mathrm{6}\:\int\left[\frac{−\mathrm{4}}{{u}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }+{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{3}\right]{du} \\ $$$$\:\:\:=\mathrm{6}\left[−\mathrm{4}{tan}^{−\mathrm{1}} \left({u}\right)\:+\:{I}_{\mathrm{1}} \:+\:\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\mathrm{3}{u}\right]+{c} \\ $$$${I}_{\mathrm{1}} \:=\:\int\frac{\mathrm{1}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{du} \\ $$$${Put}\:{u}\:=\:{tan}\:{z}\:\:\:\:\:{du}\:=\:{sec}^{\mathrm{2}} {z}\:{dz} \\ $$$${I}_{\mathrm{1}} \:=\:\int\frac{\mathrm{1}}{{sec}^{\mathrm{4}} {z}}×{sec}^{\mathrm{2}} {z}\:{dz}\:=\:\int{cos}^{\mathrm{2}} {z}\:{dz} \\ $$$$\:\:\:\:\:=\:\int\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\:\mathrm{2}{z}\:+\:\mathrm{1}\right){dz} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\:\mathrm{2}{z}\:+\:{z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}×\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u} \\ $$$${I}\:=\:−\mathrm{4}\:{tan}^{−\mathrm{1}} {u}\:+\:\frac{{u}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u}\:+\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\:\mathrm{3}{u}\:+\:{c} \\ $$$$\:\:\:=\:−\frac{\mathrm{7}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u}\:+\:\frac{{u}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{1}}{\mathrm{5}}{u}^{\mathrm{5}} \:+\:\mathrm{3}{u}\:+\:{c} \\ $$$$\:\:\:=\:−\frac{\mathrm{7}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} \left(\overset{\mathrm{6}} {\:}\sqrt{{x}}\right)\:+\:\frac{\sqrt[{\mathrm{6}}]{{x}}}{\mathrm{2}\left(\mathrm{1}+\sqrt[{\mathrm{6}}]{{x}^{\mathrm{2}} }\right)}\:+\:\frac{\mathrm{1}}{\mathrm{5}}\:\sqrt[{\mathrm{6}}]{{x}^{\mathrm{5}} }\:+\:\mathrm{3}\:\sqrt[{\mathrm{6}}]{{x}}\:+\:{c} \\ $$

Question Number 120582    Answers: 0   Comments: 0

Let u=x^(3/5) du = (3/(5x^(2/5) )) I = (5/3)∫(u/( (√(3−2u)))) du = −(5/6) ∫((3−2u−3)/( (√(3−2u)))) du = −(5/3) ∫[(√(3−2u)) −3(3−2u)^(−(1/2)) ] du = −(5/3)[−(1/3)(3−2u)^(3/2) +3(3−2u)^(1/2) ]+c = −(5/(18))(3−2u)^(1/2) [−3+2u + 9]+c = −(5/(18))(3−2u)^(1/2) (6+2u)+c = −(5/9)(√(3−2x^(3/5) ))(3+x^(3/5) )+c

$${Let}\:{u}={x}^{\frac{\mathrm{3}}{\mathrm{5}}} \:\:\:\:\:{du}\:=\:\frac{\mathrm{3}}{\mathrm{5}{x}^{\frac{\mathrm{2}}{\mathrm{5}}} } \\ $$$${I}\:=\:\frac{\mathrm{5}}{\mathrm{3}}\int\frac{{u}}{\:\sqrt{\mathrm{3}−\mathrm{2}{u}}}\:{du}\:=\:−\frac{\mathrm{5}}{\mathrm{6}}\:\int\frac{\mathrm{3}−\mathrm{2}{u}−\mathrm{3}}{\:\sqrt{\mathrm{3}−\mathrm{2}{u}}}\:{du} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{3}}\:\int\left[\sqrt{\mathrm{3}−\mathrm{2}{u}}\:−\mathrm{3}\left(\mathrm{3}−\mathrm{2}{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right]\:{du} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{3}}\left[−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{3}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right]+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{18}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left[−\mathrm{3}+\mathrm{2}{u}\:+\:\mathrm{9}\right]+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{18}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{6}+\mathrm{2}{u}\right)+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{9}}\sqrt{\mathrm{3}−\mathrm{2}{x}^{\frac{\mathrm{3}}{\mathrm{5}}} }\left(\mathrm{3}+{x}^{\frac{\mathrm{3}}{\mathrm{5}}} \right)+{c} \\ $$

Question Number 120562    Answers: 1   Comments: 0

Question Number 120554    Answers: 0   Comments: 0

Prove that for all a>0 ∫_([−a;a]) arg(Γ((1/2) −ix))dx =0 Deduce that f: x→arg(Γ((1/2) −ix)) is an old function on R

$${Prove}\:{that}\:{for}\:{all}\:\:{a}>\mathrm{0} \\ $$$$\int_{\left[−{a};{a}\right]} {arg}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\:−{ix}\right)\right){dx}\:=\mathrm{0} \\ $$$${Deduce}\:{that}\: \\ $$$${f}:\:{x}\rightarrow{arg}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\:−{ix}\right)\right)\:\:{is}\:{an}\:{old}\:{function}\:{on}\:\mathbb{R} \\ $$

Question Number 120552    Answers: 0   Comments: 0

evaluate: ∫_0 ^( ∞) ((x/(x+1)))^(x!) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\mathrm{evaluate}:\:\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{x}}{{x}+\mathrm{1}}\right)^{{x}!} {dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 120549    Answers: 3   Comments: 0

Question Number 120544    Answers: 1   Comments: 0

∫(1/((cos x)^6 ))=?

$$\int\frac{\mathrm{1}}{\left(\mathrm{cos}\:{x}\right)^{\mathrm{6}} }=? \\ $$

Question Number 120438    Answers: 3   Comments: 0

Question Number 120395    Answers: 3   Comments: 0

Question Number 120374    Answers: 3   Comments: 0

∫ ((√(1+x^2 ))/x) dx

$$\:\:\:\:\int\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}}\:{dx}\: \\ $$

Question Number 120342    Answers: 0   Comments: 0

Question Number 120316    Answers: 1   Comments: 0

calculate ∫_0 ^(π/2) ((xcosx)/(cos(2x)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{xcosx}}{{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Question Number 120297    Answers: 3   Comments: 0

∫_0 ^(π/2) ((x dx)/(sin x+cos x))

$$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{{x}\:{dx}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}} \\ $$

Question Number 120285    Answers: 0   Comments: 0

calculate ∫_2 ^∞ (dx/((x^2 −1)^2 (x^2 +x+1)))

$${calculate}\:\:\int_{\mathrm{2}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)} \\ $$

Question Number 120283    Answers: 0   Comments: 0

fond ∫_2 ^∞ ((ln(1+3x^2 ))/(1+x^4 ))dx

$${fond}\:\int_{\mathrm{2}} ^{\infty} \frac{{ln}\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 120257    Answers: 2   Comments: 1

∫ ((f ′(x))/(f(x))) =?

$$\:\int\:\frac{{f}\:'\left({x}\right)}{{f}\left({x}\right)}\:=? \\ $$

Question Number 120254    Answers: 4   Comments: 0

∫ (dx/(1+cosθ.cos x )) ?

$$\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{cos}\theta.\mathrm{cos}\:{x}\:}\:? \\ $$

Question Number 120207    Answers: 0   Comments: 0

Question Number 120109    Answers: 0   Comments: 0

Question Number 120102    Answers: 2   Comments: 0

Θ = ∫ ((4x^(−1) +8x^(−3) )/(x^2 (√(x^4 +2x^2 +2)))) dx

$$\:\Theta\:=\:\int\:\frac{\mathrm{4}{x}^{−\mathrm{1}} +\mathrm{8}{x}^{−\mathrm{3}} }{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}}}\:{dx}\: \\ $$

Question Number 120064    Answers: 1   Comments: 0

I = ∫ _0 ^(π/2) ((1/(ln (tan r))) + (1/(1−tan r)) ) dr

$${I}\:=\:\int\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\:}}\left(\frac{\mathrm{1}}{\mathrm{ln}\:\left(\mathrm{tan}\:{r}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{tan}\:{r}}\:\right)\:{dr} \\ $$

Question Number 120060    Answers: 2   Comments: 0

(i) ∫_(−2) ^0 (dx/(2x+3)) (ii)∫_3 ^5 (dx/( (((4−x)^2 ))^(1/3) ))

$$\left({i}\right)\:\underset{−\mathrm{2}} {\overset{\mathrm{0}} {\int}}\:\frac{{dx}}{\mathrm{2}{x}+\mathrm{3}} \\ $$$$\left({ii}\right)\underset{\mathrm{3}} {\overset{\mathrm{5}} {\int}}\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{4}−{x}\right)^{\mathrm{2}} }}\: \\ $$

Question Number 120059    Answers: 1   Comments: 0

Question Number 120040    Answers: 2   Comments: 0

∫ (t^5 /( (√(2+t^2 )))) dt

$$\:\int\:\frac{{t}^{\mathrm{5}} }{\:\sqrt{\mathrm{2}+{t}^{\mathrm{2}} }}\:{dt}\: \\ $$

  Pg 129      Pg 130      Pg 131      Pg 132      Pg 133      Pg 134      Pg 135      Pg 136      Pg 137      Pg 138   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com