Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 132
Question Number 114103 Answers: 0 Comments: 1
$$\int\sqrt{{ln}\left({tan}\left({x}\right)\right)}{dx} \\ $$
Question Number 114102 Answers: 2 Comments: 0
$$\int\:\frac{{dx}}{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}} \\ $$
Question Number 114094 Answers: 3 Comments: 0
$$\int\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$
Question Number 114072 Answers: 3 Comments: 0
$$\int\frac{\mathrm{1}}{\boldsymbol{\mathrm{sinx}}\:+\:\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}} \\ $$
Question Number 114056 Answers: 4 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\frac{\mathrm{dt}}{\left(\mathrm{2t}+\mathrm{3}\right)^{\mathrm{4}} \left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Question Number 114045 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:...\:\:{advanced}\:{calculus}... \\ $$$$ \\ $$$${i}\::\:\:{prove}\:\:{that}\::: \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}−{x}\right)\right)}{{ln}\left(\mathrm{1}−{x}\right)}\:{dx}\:\overset{?} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${ii}:\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:\overset{?} {=}\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}\:\mathrm{1970}# \\ $$$$\:\:\: \\ $$
Question Number 114044 Answers: 1 Comments: 0
$${old}\:{and}\:{unanswered}...\:{Mr}\:{Mathdave}??? \\ $$$$\int{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}+{x}\right){dx}=? \\ $$
Question Number 113929 Answers: 2 Comments: 4
$$\int\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{5}} \mathrm{dx}\: \\ $$$$ \\ $$
Question Number 113910 Answers: 4 Comments: 0
$$\left(\mathrm{1}\right)\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{sin}\:^{\mathrm{4}} {x}}{\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:{dx}\:? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{{x}}\right)}}{\frac{\mathrm{1}}{{x}}}\:? \\ $$
Question Number 113907 Answers: 1 Comments: 0
$$\int\:\sqrt{{x}}\:\mathrm{cos}\:\left(\sqrt{{x}}\right)\:{dx} \\ $$
Question Number 113868 Answers: 0 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:\mathrm{the}\:\mathrm{circle}\:\rho=\mathrm{2acos}\theta\:\mathrm{and}\: \\ $$$$\mathrm{cardiode}\:\rho=\mathrm{a}\left(\mathrm{1}+\mathrm{cos}\theta\right) \\ $$
Question Number 113867 Answers: 1 Comments: 0
$$\int_{\mathrm{3}} ^{\mathrm{6}} \frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{6x}}\mathrm{dx} \\ $$
Question Number 113865 Answers: 0 Comments: 0
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{x}\left(\mathrm{lnx}\right)^{\mathrm{n}} \mathrm{dx}\:\mathrm{and}\:\mathrm{I}_{\mathrm{0}} =\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{xdx} \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:? \\ $$$$\mathrm{a}\backslash\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\frac{\mathrm{e}^{\mathrm{2}} }{\mathrm{n}+\mathrm{2}}\:\:\:\:\mathrm{b}\backslash\mathrm{1}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\frac{\mathrm{e}^{\mathrm{2}} }{\mathrm{n}+\mathrm{1}}\:\:\mathrm{c}\backslash\mathrm{I}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{negative} \\ $$
Question Number 113821 Answers: 3 Comments: 1
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}−\mathrm{sinx}\right)\mathrm{dx} \\ $$
Question Number 113766 Answers: 1 Comments: 0
$$ \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \left(\frac{\pi}{\mathrm{1}+\pi^{\mathrm{2}} {x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){lnx}\:{dx} \\ $$$${put}\:\pi{x}={tanA},\:{x}\:={tanB} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({ln}\left({tanA}\right)−{ln}\pi\right){dA}−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {ln}\left({tanB}\right){dB} \\ $$$${I}=\frac{−\pi}{\mathrm{2}}{ln}\pi \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 113760 Answers: 1 Comments: 0
$$\int\sqrt{\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }}\mathrm{dx} \\ $$
Question Number 113745 Answers: 1 Comments: 0
Question Number 113738 Answers: 1 Comments: 0
$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$
Question Number 113757 Answers: 2 Comments: 0
$$\:\int\:\frac{{dx}}{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}}\:?\: \\ $$
Question Number 113675 Answers: 1 Comments: 3
Question Number 113656 Answers: 1 Comments: 0
$$\:\:\int\:\frac{\left(\mathrm{1}+\mathrm{tan}\:\left(\frac{\mathrm{3x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}\:\mathrm{3x}}\:\mathrm{dx}\:? \\ $$
Question Number 113634 Answers: 2 Comments: 0
$${Bonjour}\:{besoin}\:{d}'{aide} \\ $$$${Calculer}\:\int{ln}\left({cosx}\right){dx} \\ $$
Question Number 113630 Answers: 3 Comments: 0
$$\mathrm{explicit}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{acos}^{\mathrm{2}} \theta\right)\mathrm{d}\theta \\ $$
Question Number 113629 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{8}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{a}\:\mathrm{sin}\theta\right)\mathrm{d}\theta\:\:\:\mathrm{with}\:\mathrm{o}<\mathrm{a}<\mathrm{1} \\ $$
Question Number 113600 Answers: 1 Comments: 0
$${Prouver}\:{que} \\ $$$$\beta\left({a},{b}\right)=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx} \\ $$
Question Number 113628 Answers: 1 Comments: 0
$$\mathrm{find}\:\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}+\left(\mathrm{x}−\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$
Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134 Pg 135 Pg 136
Terms of Service
Privacy Policy
Contact: info@tinkutara.com