Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 131
Question Number 121384 Answers: 2 Comments: 2
$$\:\int\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$
Question Number 121315 Answers: 2 Comments: 0
$${find}\:{lim}\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} {arctan}\left(\mathrm{1}+\frac{{x}}{{n}}\right){e}^{−{nx}} {dx} \\ $$
Question Number 121314 Answers: 1 Comments: 0
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} +{n}^{\mathrm{2}} }{dx} \\ $$
Question Number 121300 Answers: 2 Comments: 1
$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:? \\ $$
Question Number 121225 Answers: 2 Comments: 0
$$\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{x}^{\mathrm{5}} \:\sqrt{\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:? \\ $$
Question Number 121224 Answers: 1 Comments: 0
$$\:\:\:\:\int\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}\:\mathrm{dx}\: \\ $$
Question Number 121203 Answers: 2 Comments: 0
$$\:\int\:\frac{\mathrm{cos}\:^{\mathrm{5}} \left(\mathrm{x}\right)}{\:\sqrt{\mathrm{sin}\:\left(\mathrm{x}\right)}}\:\mathrm{dx}\: \\ $$
Question Number 121174 Answers: 4 Comments: 0
$$\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{ln}\:\left(\frac{\pi+\mathrm{x}}{\pi−\mathrm{x}}\right)\right)\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:? \\ $$
Question Number 121119 Answers: 4 Comments: 0
$$\mathrm{M}=\:\int\underset{−\mathrm{15}} {\overset{−\mathrm{8}} {\:}}\left(\:\frac{\mathrm{dx}}{\mathrm{x}\sqrt{\mathrm{1}−\mathrm{x}}}\right)\:?\: \\ $$
Question Number 121117 Answers: 2 Comments: 0
$$\:\mathrm{J}=\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}}{\:\sqrt{\mathrm{x}+\mathrm{1}}}\:\mathrm{dx}\:? \\ $$
Question Number 121102 Answers: 2 Comments: 0
$$\:\int\:\frac{\left(\mathrm{x}−\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dx}\:? \\ $$
Question Number 121029 Answers: 2 Comments: 1
Question Number 120970 Answers: 1 Comments: 0
Question Number 120964 Answers: 0 Comments: 3
Question Number 120898 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\mathrm{evaluate}:\:\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{x}}{{x}+\mathrm{1}}\:−\:\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{k}}{{k}+\mathrm{1}}\right)^{\lfloor{k}\rfloor} \right)^{\lfloor{x}\rfloor} {dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 120879 Answers: 0 Comments: 0
Question Number 120875 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...\:\mathscr{N}{ice}\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:{S}=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}^{−\mathrm{2}{n}} }{\mathrm{1}+{cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}\right)=??\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathscr{M}.\mathscr{N}.\mathrm{1970}... \\ $$
Question Number 120775 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\overset{???} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({x}\right){tan}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$
Question Number 120774 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}\overset{???} {=}−\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\left({ln}\left(\mathrm{3}\right)+\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$
Question Number 120761 Answers: 1 Comments: 0
$$\:\:\:\:\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}}\:\right)\:\mathrm{dx}\:? \\ $$
Question Number 120758 Answers: 3 Comments: 0
$$\:\int\:\frac{\mathrm{dx}}{{a}\:\mathrm{sin}\:\mathrm{x}\:+\:{b}\:\mathrm{cos}\:\mathrm{x}} \\ $$
Question Number 120703 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{9}+\mathrm{x}^{\mathrm{2}} }}\:? \\ $$
Question Number 120688 Answers: 1 Comments: 0
$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\: \\ $$$$ \\ $$
Question Number 120628 Answers: 0 Comments: 15
$${selective}\:{intregals} \\ $$
Question Number 120599 Answers: 0 Comments: 0
$${Let}\:{x}\:=\:{u}^{\mathrm{6}} \:\:\:\:\:\:\:\:\:{dx}\:=\:\mathrm{6}{u}^{\mathrm{5}} \:{du} \\ $$$${I}\:=\:\int\frac{{u}^{\mathrm{3}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:×\mathrm{6}{u}^{\mathrm{5}} \:{du} \\ $$$$\:\:\:=\mathrm{6}\:\int\frac{{u}^{\mathrm{8}} }{\mathrm{1}+\mathrm{2}{u}^{\mathrm{2}} +{u}^{\mathrm{4}} }\:{du} \\ $$$$\:\:\:=\mathrm{6}\:\int\left[\frac{−\mathrm{4}}{{u}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }+{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{3}\right]{du} \\ $$$$\:\:\:=\mathrm{6}\left[−\mathrm{4}{tan}^{−\mathrm{1}} \left({u}\right)\:+\:{I}_{\mathrm{1}} \:+\:\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\mathrm{3}{u}\right]+{c} \\ $$$${I}_{\mathrm{1}} \:=\:\int\frac{\mathrm{1}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{du} \\ $$$${Put}\:{u}\:=\:{tan}\:{z}\:\:\:\:\:{du}\:=\:{sec}^{\mathrm{2}} {z}\:{dz} \\ $$$${I}_{\mathrm{1}} \:=\:\int\frac{\mathrm{1}}{{sec}^{\mathrm{4}} {z}}×{sec}^{\mathrm{2}} {z}\:{dz}\:=\:\int{cos}^{\mathrm{2}} {z}\:{dz} \\ $$$$\:\:\:\:\:=\:\int\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\:\mathrm{2}{z}\:+\:\mathrm{1}\right){dz} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\:\mathrm{2}{z}\:+\:{z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}×\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u} \\ $$$${I}\:=\:−\mathrm{4}\:{tan}^{−\mathrm{1}} {u}\:+\:\frac{{u}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u}\:+\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\:\mathrm{3}{u}\:+\:{c} \\ $$$$\:\:\:=\:−\frac{\mathrm{7}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u}\:+\:\frac{{u}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{1}}{\mathrm{5}}{u}^{\mathrm{5}} \:+\:\mathrm{3}{u}\:+\:{c} \\ $$$$\:\:\:=\:−\frac{\mathrm{7}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} \left(\overset{\mathrm{6}} {\:}\sqrt{{x}}\right)\:+\:\frac{\sqrt[{\mathrm{6}}]{{x}}}{\mathrm{2}\left(\mathrm{1}+\sqrt[{\mathrm{6}}]{{x}^{\mathrm{2}} }\right)}\:+\:\frac{\mathrm{1}}{\mathrm{5}}\:\sqrt[{\mathrm{6}}]{{x}^{\mathrm{5}} }\:+\:\mathrm{3}\:\sqrt[{\mathrm{6}}]{{x}}\:+\:{c} \\ $$
Question Number 120582 Answers: 0 Comments: 0
$${Let}\:{u}={x}^{\frac{\mathrm{3}}{\mathrm{5}}} \:\:\:\:\:{du}\:=\:\frac{\mathrm{3}}{\mathrm{5}{x}^{\frac{\mathrm{2}}{\mathrm{5}}} } \\ $$$${I}\:=\:\frac{\mathrm{5}}{\mathrm{3}}\int\frac{{u}}{\:\sqrt{\mathrm{3}−\mathrm{2}{u}}}\:{du}\:=\:−\frac{\mathrm{5}}{\mathrm{6}}\:\int\frac{\mathrm{3}−\mathrm{2}{u}−\mathrm{3}}{\:\sqrt{\mathrm{3}−\mathrm{2}{u}}}\:{du} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{3}}\:\int\left[\sqrt{\mathrm{3}−\mathrm{2}{u}}\:−\mathrm{3}\left(\mathrm{3}−\mathrm{2}{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right]\:{du} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{3}}\left[−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{3}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right]+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{18}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left[−\mathrm{3}+\mathrm{2}{u}\:+\:\mathrm{9}\right]+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{18}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{6}+\mathrm{2}{u}\right)+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{9}}\sqrt{\mathrm{3}−\mathrm{2}{x}^{\frac{\mathrm{3}}{\mathrm{5}}} }\left(\mathrm{3}+{x}^{\frac{\mathrm{3}}{\mathrm{5}}} \right)+{c} \\ $$
Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134 Pg 135
Terms of Service
Privacy Policy
Contact: info@tinkutara.com