Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 131

Question Number 121384    Answers: 2   Comments: 2

∫ (√(1+x^4 )) dx

$$\:\int\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$

Question Number 121315    Answers: 2   Comments: 0

find lim ∫_(1/n) ^n arctan(1+(x/n))e^(−nx) dx

$${find}\:{lim}\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} {arctan}\left(\mathrm{1}+\frac{{x}}{{n}}\right){e}^{−{nx}} {dx} \\ $$

Question Number 121314    Answers: 1   Comments: 0

find lim_(n→+∞) ∫_0 ^n ((cos(nx))/(x^2 +n^2 ))dx

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} +{n}^{\mathrm{2}} }{dx} \\ $$

Question Number 121300    Answers: 2   Comments: 1

∫ (dx/(x^3 +x^2 +x+1)) ?

$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:? \\ $$

Question Number 121225    Answers: 2   Comments: 0

∫_0 ^1 x^5 (√((1+x^2 )/(1−x^2 ))) dx ?

$$\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{x}^{\mathrm{5}} \:\sqrt{\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:? \\ $$

Question Number 121224    Answers: 1   Comments: 0

∫ cos^2 x tan^3 x dx

$$\:\:\:\:\int\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}\:\mathrm{dx}\: \\ $$

Question Number 121203    Answers: 2   Comments: 0

∫ ((cos^5 (x))/( (√(sin (x))))) dx

$$\:\int\:\frac{\mathrm{cos}\:^{\mathrm{5}} \left(\mathrm{x}\right)}{\:\sqrt{\mathrm{sin}\:\left(\mathrm{x}\right)}}\:\mathrm{dx}\: \\ $$

Question Number 121174    Answers: 4   Comments: 0

∫_(−π/2) ^(π/2) (x^2 +ln (((π+x)/(π−x))))cos x dx ?

$$\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{ln}\:\left(\frac{\pi+\mathrm{x}}{\pi−\mathrm{x}}\right)\right)\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:? \\ $$

Question Number 121119    Answers: 4   Comments: 0

M= ∫ _(−15) ^(−8) ( (dx/(x(√(1−x))))) ?

$$\mathrm{M}=\:\int\underset{−\mathrm{15}} {\overset{−\mathrm{8}} {\:}}\left(\:\frac{\mathrm{dx}}{\mathrm{x}\sqrt{\mathrm{1}−\mathrm{x}}}\right)\:?\: \\ $$

Question Number 121117    Answers: 2   Comments: 0

J=∫_0 ^3 ((2x^2 +x−1)/( (√(x+1)))) dx ?

$$\:\mathrm{J}=\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}}{\:\sqrt{\mathrm{x}+\mathrm{1}}}\:\mathrm{dx}\:? \\ $$

Question Number 121102    Answers: 2   Comments: 0

∫ (((x−1)(√(x^4 +2x^3 −x^2 +2x+1)))/(x^2 (x+1))) dx ?

$$\:\int\:\frac{\left(\mathrm{x}−\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dx}\:? \\ $$

Question Number 121029    Answers: 2   Comments: 1

Question Number 120970    Answers: 1   Comments: 0

Question Number 120964    Answers: 0   Comments: 3

Question Number 120898    Answers: 0   Comments: 0

evaluate: ∫_0 ^( ∞) ((x/(x+1)) − lim_(k→∞) ((k/(k+1)))^(⌊k⌋) )^(⌊x⌋) dx

$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\mathrm{evaluate}:\:\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{x}}{{x}+\mathrm{1}}\:−\:\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{k}}{{k}+\mathrm{1}}\right)^{\lfloor{k}\rfloor} \right)^{\lfloor{x}\rfloor} {dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 120879    Answers: 0   Comments: 0

Question Number 120875    Answers: 0   Comments: 0

... Nice calculus... evaluate :: S= Σ_(n=1) ^∞ ((2^(−2n) /(1+cos((π/2^n )))))=?? ...M.N.1970...

$$\:\:\:\:\:\:\:\:\:\:...\:\mathscr{N}{ice}\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:{S}=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}^{−\mathrm{2}{n}} }{\mathrm{1}+{cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}\right)=??\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathscr{M}.\mathscr{N}.\mathrm{1970}... \\ $$

Question Number 120775    Answers: 2   Comments: 0

...advanced calculus... evaluate :: Φ=^(???) ∫_0 ^( 1) ln(x)tan^(−1) (x)dx ...m.n.1970...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\overset{???} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({x}\right){tan}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$

Question Number 120774    Answers: 1   Comments: 0

...advanced calculus... prove that :: Ω=∫_0 ^( 1) ((ln(x))/( ((1−x^3 ))^(1/3) ))dx=^(???) −(π/(3(√3)))(ln(3)+(π/(3(√3)))) ...m.n.1970...

$$\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}\overset{???} {=}−\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\left({ln}\left(\mathrm{3}\right)+\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$

Question Number 120761    Answers: 1   Comments: 0

∫ tan^(−1) ((√((1−x)/(1+x))) ) dx ?

$$\:\:\:\:\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}}\:\right)\:\mathrm{dx}\:? \\ $$

Question Number 120758    Answers: 3   Comments: 0

∫ (dx/(a sin x + b cos x))

$$\:\int\:\frac{\mathrm{dx}}{{a}\:\mathrm{sin}\:\mathrm{x}\:+\:{b}\:\mathrm{cos}\:\mathrm{x}} \\ $$

Question Number 120703    Answers: 1   Comments: 0

∫ (dx/(x^2 (√(9+x^2 )))) ?

$$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{9}+\mathrm{x}^{\mathrm{2}} }}\:? \\ $$

Question Number 120688    Answers: 1   Comments: 0

∫_0 ^π ((x dx)/(1+sin^2 x))

$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\: \\ $$$$ \\ $$

Question Number 120628    Answers: 0   Comments: 15

selective intregals

$${selective}\:{intregals} \\ $$

Question Number 120599    Answers: 0   Comments: 0

Let x = u^6 dx = 6u^5 du I = ∫(u^3 /((1+u^2 )^2 )) ×6u^5 du =6 ∫(u^8 /(1+2u^2 +u^4 )) du =6 ∫[((−4)/(u^2 +1))+(1/((1+u^2 )^2 ))+u^4 −2u^2 +3]du =6[−4tan^(−1) (u) + I_1 + (u^5 /5) − (2/3)u^3 +3u]+c I_1 = ∫(1/((1+u^2 )^2 )) du Put u = tan z du = sec^2 z dz I_1 = ∫(1/(sec^4 z))×sec^2 z dz = ∫cos^2 z dz = ∫(1/2)(cos 2z + 1)dz = (1/2)((1/2) sin 2z + z) = (1/2)×(u/(1+u^2 )) + (1/2) tan^(−1) u I = −4 tan^(−1) u + (u/(2(1+u^2 ))) + (1/2) tan^(−1) u +(u^5 /5) − (2/3)u^3 + 3u + c = −(7/2) tan^(−1) u + (u/(2(1+u^2 ))) + (1/5)u^5 + 3u + c = −(7/2) tan^(−1) ( ^6 (√x)) + ((x)^(1/6) /(2(1+(x^2 )^(1/6) ))) + (1/5) (x^5 )^(1/6) + 3 (x)^(1/6) + c

$${Let}\:{x}\:=\:{u}^{\mathrm{6}} \:\:\:\:\:\:\:\:\:{dx}\:=\:\mathrm{6}{u}^{\mathrm{5}} \:{du} \\ $$$${I}\:=\:\int\frac{{u}^{\mathrm{3}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:×\mathrm{6}{u}^{\mathrm{5}} \:{du} \\ $$$$\:\:\:=\mathrm{6}\:\int\frac{{u}^{\mathrm{8}} }{\mathrm{1}+\mathrm{2}{u}^{\mathrm{2}} +{u}^{\mathrm{4}} }\:{du} \\ $$$$\:\:\:=\mathrm{6}\:\int\left[\frac{−\mathrm{4}}{{u}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }+{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{3}\right]{du} \\ $$$$\:\:\:=\mathrm{6}\left[−\mathrm{4}{tan}^{−\mathrm{1}} \left({u}\right)\:+\:{I}_{\mathrm{1}} \:+\:\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\mathrm{3}{u}\right]+{c} \\ $$$${I}_{\mathrm{1}} \:=\:\int\frac{\mathrm{1}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{du} \\ $$$${Put}\:{u}\:=\:{tan}\:{z}\:\:\:\:\:{du}\:=\:{sec}^{\mathrm{2}} {z}\:{dz} \\ $$$${I}_{\mathrm{1}} \:=\:\int\frac{\mathrm{1}}{{sec}^{\mathrm{4}} {z}}×{sec}^{\mathrm{2}} {z}\:{dz}\:=\:\int{cos}^{\mathrm{2}} {z}\:{dz} \\ $$$$\:\:\:\:\:=\:\int\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\:\mathrm{2}{z}\:+\:\mathrm{1}\right){dz} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\:\mathrm{2}{z}\:+\:{z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}×\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u} \\ $$$${I}\:=\:−\mathrm{4}\:{tan}^{−\mathrm{1}} {u}\:+\:\frac{{u}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u}\:+\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\:\mathrm{3}{u}\:+\:{c} \\ $$$$\:\:\:=\:−\frac{\mathrm{7}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} {u}\:+\:\frac{{u}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{1}}{\mathrm{5}}{u}^{\mathrm{5}} \:+\:\mathrm{3}{u}\:+\:{c} \\ $$$$\:\:\:=\:−\frac{\mathrm{7}}{\mathrm{2}}\:{tan}^{−\mathrm{1}} \left(\overset{\mathrm{6}} {\:}\sqrt{{x}}\right)\:+\:\frac{\sqrt[{\mathrm{6}}]{{x}}}{\mathrm{2}\left(\mathrm{1}+\sqrt[{\mathrm{6}}]{{x}^{\mathrm{2}} }\right)}\:+\:\frac{\mathrm{1}}{\mathrm{5}}\:\sqrt[{\mathrm{6}}]{{x}^{\mathrm{5}} }\:+\:\mathrm{3}\:\sqrt[{\mathrm{6}}]{{x}}\:+\:{c} \\ $$

Question Number 120582    Answers: 0   Comments: 0

Let u=x^(3/5) du = (3/(5x^(2/5) )) I = (5/3)∫(u/( (√(3−2u)))) du = −(5/6) ∫((3−2u−3)/( (√(3−2u)))) du = −(5/3) ∫[(√(3−2u)) −3(3−2u)^(−(1/2)) ] du = −(5/3)[−(1/3)(3−2u)^(3/2) +3(3−2u)^(1/2) ]+c = −(5/(18))(3−2u)^(1/2) [−3+2u + 9]+c = −(5/(18))(3−2u)^(1/2) (6+2u)+c = −(5/9)(√(3−2x^(3/5) ))(3+x^(3/5) )+c

$${Let}\:{u}={x}^{\frac{\mathrm{3}}{\mathrm{5}}} \:\:\:\:\:{du}\:=\:\frac{\mathrm{3}}{\mathrm{5}{x}^{\frac{\mathrm{2}}{\mathrm{5}}} } \\ $$$${I}\:=\:\frac{\mathrm{5}}{\mathrm{3}}\int\frac{{u}}{\:\sqrt{\mathrm{3}−\mathrm{2}{u}}}\:{du}\:=\:−\frac{\mathrm{5}}{\mathrm{6}}\:\int\frac{\mathrm{3}−\mathrm{2}{u}−\mathrm{3}}{\:\sqrt{\mathrm{3}−\mathrm{2}{u}}}\:{du} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{3}}\:\int\left[\sqrt{\mathrm{3}−\mathrm{2}{u}}\:−\mathrm{3}\left(\mathrm{3}−\mathrm{2}{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right]\:{du} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{3}}\left[−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{3}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right]+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{18}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left[−\mathrm{3}+\mathrm{2}{u}\:+\:\mathrm{9}\right]+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{18}}\left(\mathrm{3}−\mathrm{2}{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{6}+\mathrm{2}{u}\right)+{c} \\ $$$$=\:−\frac{\mathrm{5}}{\mathrm{9}}\sqrt{\mathrm{3}−\mathrm{2}{x}^{\frac{\mathrm{3}}{\mathrm{5}}} }\left(\mathrm{3}+{x}^{\frac{\mathrm{3}}{\mathrm{5}}} \right)+{c} \\ $$

  Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132      Pg 133      Pg 134      Pg 135   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com