Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 131
Question Number 116846 Answers: 0 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}}\:\:{dx}<\frac{\pi}{\mathrm{8}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 116844 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{8x}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2x}\right)}{\:\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}\:\mathrm{dx}\: \\ $$
Question Number 116815 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)}\:=? \\ $$
Question Number 116813 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\underset{\mathrm{1}} {\overset{\sqrt{\mathrm{3}}} {\int}}\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$
Question Number 116803 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$$$\begin{cases}{\frac{\partial\mathrm{Z}}{\partial\mathrm{y}}−\frac{\partial\mathrm{Y}}{\partial\mathrm{z}}=\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\\{\frac{\partial\mathrm{Z}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{z}}=−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\partial\mathrm{Y}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{y}}=\mathrm{z}\left(\mathrm{2x}−\mathrm{y}\right)}\end{cases}\:\mathrm{where}\:\begin{cases}{\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\mathrm{0}}\end{cases} \\ $$
Question Number 116806 Answers: 2 Comments: 0
$$\mathrm{Hi} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\:\int_{-\infty} ^{+\infty} -\mathrm{e}^{-\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\sqrt{\pi} \\ $$$$\mathrm{Thanks}\:\mathrm{beforehand} \\ $$$$ \\ $$
Question Number 116796 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:...\:\:\:\:\:\:{calculus}\:\:... \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}} }{{log}\left({x}\right)}{dx}\overset{???} {=}{log}\left(\:\frac{\left({p}+{q}+{r}+\mathrm{1}\right){r}}{\left({p}+{r}\right)\left({q}+{r}\right)}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\: \\ $$
Question Number 116744 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\frac{\:{nice}}{{calculus}}\:... \\ $$$$\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{1}} ^{\:\infty} \frac{{e}^{−\mathrm{4}{x}} }{\:\sqrt{{x}+\mathrm{1}}}\:{dx}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:{e}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{m}.{n}\:.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 116742 Answers: 0 Comments: 0
$${the}\:{curve}\:{y}={f}\left({x}\right)\:{is}\:{rotated}\:{about}\:{the} \\ $$$${x}−{axis}\:{to}\:{form}\:{solid}.{the}\:{volume}\:{of}\:{this} \\ $$$${solid}\:{is}\:\mathrm{0}.\mathrm{5}\pi\left({a}−\mathrm{2}{sina}\:{cosa}\right)\:{for}\:{the}\:{limit} \\ $$$${of}\:\mathrm{0}\leqslant{x}\leqslant{a}.\:{find}\:{the}\:{value}\:{of}\:{a} \\ $$$$ \\ $$
Question Number 116738 Answers: 1 Comments: 1
$${determine}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bounded} \\ $$$${by}\:{y}=\left(\mathrm{2}{x}+\mathrm{6}\right)^{\mathrm{0}.\mathrm{5}\:} {and}\:{y}={x}−\mathrm{1} \\ $$
Question Number 116737 Answers: 1 Comments: 0
$${find}\:{the}\:{lenght}\:{of}\:{the}\:{function}\:{y}={sinx}\: \\ $$$${for}\:\mathrm{0}<{x}<\pi \\ $$$$ \\ $$
Question Number 116710 Answers: 2 Comments: 0
Question Number 116701 Answers: 2 Comments: 2
$$\int\:\frac{\mathrm{dx}}{\mathrm{x}+\mathrm{x}\sqrt{\mathrm{x}}}\:=? \\ $$
Question Number 116687 Answers: 2 Comments: 0
$${Help}\:{please},\:{to}\:{solve}\:{this}\:... \\ $$$${If}\:{f}\left({x}\right)=\mathrm{1}+{x}^{\mathrm{2}} \:\:{for}\:{x}\in\left[−\mathrm{2},\mathrm{2}\right]\:{and}\: \\ $$$$\:\:\:\:\:\:{f}\left({x}\right)=\mathrm{5}\:\:\:\:\:\:\:\:{otherwise}. \\ $$$${Then}\:{what}\:{is}\:{the}\:{value}\:{of} \\ $$$$\int_{−\mathrm{2}} ^{+\mathrm{2}} {f}\left(\mathrm{2}{x}^{\mathrm{2}} \right){dx}? \\ $$$$ \\ $$
Question Number 116672 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:\:{nice}\:\:{calculus}\:... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\pi}{\mathrm{4}}\:\:−\mathscr{A}{rctan}\left({x}\right)\right)\frac{{dx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{G}}{\mathrm{2}}\:\:\checkmark\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$$$\mathrm{G}\:{is}\:\:\:{catalan}\:\:{constant}\:... \\ $$$$\:\:\:\:\:\:\:\mathscr{M}.\mathscr{N}.\mathrm{1970} \\ $$$$ \\ $$$$ \\ $$$$\:\:\: \\ $$
Question Number 116667 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:...\:\:\:{nice}\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:{very}\:{nice}\:\:{integral}:: \\ $$$$\:\:\:\:\:\:\:{demonstrate}::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right){log}\left({x}\right)}\:{dx}\overset{???} {=}{log}\left(\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}\right) \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.{m}.{n}.\mathrm{1970}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Question Number 116763 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{3}} }}=? \\ $$
Question Number 116717 Answers: 2 Comments: 0
$$\int{xdx} \\ $$
Question Number 116627 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{nice}\:\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:{please}\:\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\:=\:\frac{\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} +{e}^{−{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}\right)^{\mathrm{2}} }{\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}\right)\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{e}^{−{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}\right)}\:=???\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$
Question Number 116626 Answers: 2 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{{a}^{\mathrm{2}} {n}^{\mathrm{2}} }{\left.\left({an}\right)^{\mathrm{2}} −\mathrm{1}\right)}\right)=??? \\ $$$$ \\ $$
Question Number 116590 Answers: 2 Comments: 0
$$\:\int\:\frac{\sqrt{\mathrm{x}}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx}\:=? \\ $$
Question Number 116586 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{explicite}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{1}+{x}\left(\mathrm{2}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt} \\ $$$${withx}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){determine}\:{values}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{5}+\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 116564 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\mathrm{x}+\sqrt[{\mathrm{3}\:}]{\mathrm{x}}}\:? \\ $$
Question Number 116560 Answers: 1 Comments: 1
$${if}\:{arctan}\left({x}+{iy}\right)\:={a}+{ib} \\ $$$${with}\:{a}\:{and}\:{b}\:{reals}\:{determine} \\ $$$${a}\:{and}\:{b} \\ $$
Question Number 116557 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right.}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$${with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{3}+\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 116554 Answers: 1 Comments: 0
$${study}\:{the}\:{integral}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{{n}} {x}}{{x}^{{n}} }{dx} \\ $$$${n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$
Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134 Pg 135
Terms of Service
Privacy Policy
Contact: info@tinkutara.com