Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 130
Question Number 117342 Answers: 2 Comments: 0
$$\:\left(\mathrm{1}\right)\int\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \:\mathrm{dx}\:=\:? \\ $$$$\left(\mathrm{2}\right)\:\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{x}}\right)\:\mathrm{dx}\:=? \\ $$
Question Number 117329 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:{nice}\:\:{math} \\ $$$$\:\:{evaluate}:: \\ $$$$ \\ $$$$\:\:\:\: \\ $$$$\:\: \\ $$$$ \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{arctan}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}??? \\ $$$$\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$
Question Number 117311 Answers: 2 Comments: 0
Question Number 117253 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 117249 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{x}^{\mathrm{2}} } }{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\: \\ $$
Question Number 117227 Answers: 0 Comments: 0
$${why}\:{every}\:{function}\:{that}\:{is}\:{Riemann} \\ $$$${integrable}\:{is}\:{not}\:{lebsgue}\:{integrable}? \\ $$
Question Number 117221 Answers: 3 Comments: 1
$$\underset{−\infty} {\overset{\:\:\:\:\:\infty} {\int}}\:\frac{\mathrm{cos}\:\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$
Question Number 117176 Answers: 4 Comments: 1
$$\underset{\pi/\mathrm{4}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{4cot}\:{x}+\mathrm{1}\:}{\mathrm{4}−\mathrm{cot}\:{x}}\:{dx}\:=? \\ $$
Question Number 117163 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{4}\:\mathrm{dx}}{\mathrm{x}\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:=? \\ $$
Question Number 117213 Answers: 3 Comments: 0
$$\:\:\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\:\infty} {\int}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{4}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{6}}\right)}{\mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 117100 Answers: 3 Comments: 0
$$\int\:\mathrm{sin}\:^{\mathrm{6}} \left(\mathrm{2x}\right)\:\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2x}\right)\:\mathrm{dx}\:=? \\ $$
Question Number 117148 Answers: 2 Comments: 0
$$\:\:\:\int\:\mathrm{x}^{\mathrm{6}} \:\mathrm{e}^{−\mathrm{4x}^{\mathrm{2}} } \:\mathrm{dx}\:=? \\ $$
Question Number 117090 Answers: 0 Comments: 0
Question Number 117089 Answers: 0 Comments: 0
Question Number 117088 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{evsluate}\::: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xsin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$$$\:\:\:\:\:{hint}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:=\frac{\pi}{\mathrm{2}}{e}^{−{p}} \:\:\:\:\left({p}>\mathrm{0}\right)\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:.{m}.{n}\:\mathrm{1970} \\ $$$$ \\ $$
Question Number 117087 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:...\:\:{nice}\:\:{calculus}... \\ $$$$\:{please}\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$
Question Number 117066 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:.\:\mathrm{If}\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right),\: \\ $$$$\mathrm{f}^{\mathrm{3}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:,\:\mathrm{f}^{\mathrm{1998}} \left(\mathrm{x}\right)\:=\:\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\mathrm{then}\:\int_{\frac{\mathrm{1}}{\mathrm{e}}} ^{\mathrm{1}} \mathrm{g}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\_? \\ $$
Question Number 117053 Answers: 4 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{4}} }}\:\mathrm{dx}\:=? \\ $$
Question Number 117121 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:...{nice}\:\:{mathematics}.. \\ $$$$ \\ $$$$\:\:{please}\:\:{evaluate}... \\ $$$$\: \\ $$$$\:\Omega\:=\int_{−\infty} ^{\:+\infty} \left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{4}}\ast\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}\right)\:{dx}\:=???\:\: \\ $$$$\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$
Question Number 117034 Answers: 1 Comments: 0
$$\int\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }} \\ $$
Question Number 117006 Answers: 2 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{100}\pi} \mid{sinx}\mid\:{dx} \\ $$
Question Number 117002 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{{n}\pi+{v}} \mid{sinx}\mid\:{dx} \\ $$
Question Number 116999 Answers: 3 Comments: 0
$$\int\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$
Question Number 116998 Answers: 2 Comments: 2
$$\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$
Question Number 116996 Answers: 2 Comments: 0
Question Number 116903 Answers: 2 Comments: 0
Pg 125 Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134
Terms of Service
Privacy Policy
Contact: info@tinkutara.com