Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 128
Question Number 123687 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}.. \\ $$$$\:{prove}\:{that}::\:\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{2}\phi\left({x}\right)}{{x}^{\mathrm{2}} }\:+\frac{\pi^{\mathrm{2}} }{\mathrm{3}{x}}\right)\:\overset{???} {=}\zeta\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{where} \\ $$$$\:\:\:\:\:\phi\left({x}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({t}^{{x}} −\mathrm{1}\right)\left({ln}\left(\mathrm{1}−{t}\right)\right)}{{tln}\left({t}\right)}{dt} \\ $$
Question Number 123639 Answers: 1 Comments: 0
$$\:\:\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\sqrt{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}\:{dx}\:? \\ $$
Question Number 123552 Answers: 4 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \mathrm{tan}^{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 123550 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:....{nice}\:\:\:\:{mathematics}... \\ $$$$\:\:\:\:\:\:{evaluate}\::::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \left(\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}}\:\right)^{\mathrm{10}} {dx}=? \\ $$
Question Number 123513 Answers: 3 Comments: 1
$$\int\:\frac{\mathrm{sin}\:{x}+\mathrm{2cos}\:{x}}{\mathrm{3sin}\:{x}+\mathrm{4cos}\:{x}}\:{dx}? \\ $$
Question Number 123495 Answers: 1 Comments: 0
$$\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}−\mathrm{1}}{\left(\mathrm{2}−\sqrt{{x}}\right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)}\:{dx}\:? \\ $$
Question Number 123494 Answers: 2 Comments: 0
$$\:\int\:\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\:\sqrt{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}}}\:{dx}\:? \\ $$
Question Number 123462 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:\overset{??} {=}\frac{\mathrm{11}\zeta\left(\:\mathrm{3}\:\right)}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:................. \\ $$
Question Number 123456 Answers: 0 Comments: 0
$$\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\:\:\:\:\:\:\phi=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\:\frac{\mathrm{H}_{{n}} }{{n}^{\mathrm{3}} }\:\right)\overset{???} {=}\frac{\pi^{\mathrm{4}} }{\mathrm{72}} \\ $$$$\:\:\:\:\:\:\:{note}:\:\mathrm{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+...+\frac{\mathrm{1}}{{n}} \\ $$
Question Number 123452 Answers: 4 Comments: 1
$$\int\frac{{dx}}{\:\left({x}^{\mathrm{2}} +{n}\right)\sqrt{{x}^{\mathrm{2}} +{a}}} \\ $$
Question Number 123454 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:{calculate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\Omega\:\overset{???} {=}\int_{\mathrm{0}} ^{\:\infty} \sqrt{{x}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left({cos}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\right){dx} \\ $$
Question Number 123526 Answers: 3 Comments: 2
$$\:\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}\:\mathrm{arctan}\:{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:? \\ $$
Question Number 123387 Answers: 0 Comments: 2
$$\:\:\:\:\:...\:\:{nice}\:{calculus}... \\ $$$$\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({ln}\left({x}\right)\right)^{\mathrm{2}} {li}_{\mathrm{3}} \left({x}\right)}{\mathrm{1}−{x}}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{???} {=}\zeta^{\mathrm{2}} \left(\mathrm{3}\right)−\zeta\left(\mathrm{6}\right)\:\checkmark \\ $$
Question Number 123386 Answers: 1 Comments: 0
$$\:{Given}\: \\ $$$${f}\left({x}\right)=\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right){dx}\right){x}^{\mathrm{2}} +\left(\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right){dx}\right){x}+\left(\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}{f}\left({x}\right){dx}\right)+\mathrm{1} \\ $$$${then}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{4}\right)\:=\:... \\ $$
Question Number 123361 Answers: 0 Comments: 1
$${please}\:{find}\:{the}\:\int\frac{{e}^{{x}} }{{x}}{dx} \\ $$
Question Number 123352 Answers: 0 Comments: 0
$$\int\frac{{e}^{{x}} }{{x}}{dx} \\ $$
Question Number 123331 Answers: 1 Comments: 0
$$\int\:\frac{{sinx}}{{x}}\:{dx} \\ $$
Question Number 123261 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathbb{R}} {e}^{{x}−{sinh}^{\mathrm{2}} \left({x}\right)} {dx}=\sqrt{\pi} \\ $$
Question Number 123255 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\ast\ast\ast\:\:{nice}\:\:{calculus}\:\ast\ast\ast \\ $$$$\:\:\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}^{\mathrm{3}} \left({tan}\left({x}\right)\right){dx}\:=? \\ $$
Question Number 123253 Answers: 0 Comments: 0
Question Number 123234 Answers: 3 Comments: 1
$$\:\:\int\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{5}}\:{dx}\: \\ $$
Question Number 123177 Answers: 0 Comments: 0
$${lebesgue}\:{measure}\:{on}\:\left[\mathrm{0}\:\mathrm{1}\right]\:{is}\:{finite}\:?\:{true}\:{or}\:{false}\:{give}\:{reason} \\ $$
Question Number 123159 Answers: 3 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{log}^{\mathrm{2}} \left(\mathrm{tan}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$
Question Number 123154 Answers: 3 Comments: 0
Question Number 123060 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:....\:\:\:{nice}\:\:{calculus}\:.... \\ $$$$\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\overset{???} {=}\int_{−\infty} ^{\:\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{e}^{{x}} \right)\left(\mathrm{1}+{e}^{−{x}} \right)}{dx} \\ $$
Question Number 123037 Answers: 5 Comments: 0
$$\:\:\int\:\frac{\sqrt{\mathrm{1}−{x}}}{\mathrm{1}−\sqrt{{x}}}\:{dx} \\ $$$$ \\ $$
Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 Pg 132
Terms of Service
Privacy Policy
Contact: info@tinkutara.com