Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 126

Question Number 124531    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/((2x+1)^4 (x+3)^5 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}+\mathrm{3}\right)^{\mathrm{5}} } \\ $$

Question Number 124530    Answers: 1   Comments: 1

find ∫_0 ^∞ cos(x^n )dx snd ∫_0 ^∞ sin(x^n )dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){dx}\:{snd}\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{{n}} \right){dx} \\ $$

Question Number 124482    Answers: 0   Comments: 0

∫e^(sinx) (((xcos^2 x−sinx)/(cos^2 x)))dx

$$\int\mathrm{e}^{\mathrm{sinx}} \left(\frac{\mathrm{xcos}^{\mathrm{2}} \mathrm{x}−\mathrm{sinx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 124452    Answers: 1   Comments: 1

2 ((2x+1))^(1/3) = x^3 −1

$$\:\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}\:=\:{x}^{\mathrm{3}} −\mathrm{1}\: \\ $$

Question Number 124438    Answers: 1   Comments: 2

∫e^((xsinx+cosx)) ∙(((x^4 cos^3 x−xsinx+cosx)/(x^2 cos^2 x)))dx

$$\int\mathrm{e}^{\left(\mathrm{xsinx}+\mathrm{cosx}\right)} \centerdot\left(\frac{\mathrm{x}^{\mathrm{4}} \mathrm{cos}^{\mathrm{3}} \mathrm{x}−\mathrm{xsinx}+\mathrm{cosx}}{\mathrm{x}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 124432    Answers: 3   Comments: 0

... nice calculus... find:: φ=∫_0 ^( 4) ((ln(x))/((4x−x^2 )^(1/2) ))dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:{find}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{4}} \frac{{ln}\left({x}\right)}{\left(\mathrm{4}{x}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dx}=? \\ $$

Question Number 124430    Answers: 1   Comments: 0

∫ _0 ^( 5) (x^2 /(x^2 +(5−x)^2 )) dx =?

$$\:\int\overset{\:\mathrm{5}} {\:}_{\mathrm{0}} \frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\left(\mathrm{5}−{x}\right)^{\mathrm{2}} }\:{dx}\:=?\: \\ $$

Question Number 124421    Answers: 0   Comments: 3

Prove that ∫e^x ∙((x^4 +2)/((1+x^2 )^(5/2) ))dx=((e^x {1+x^2 +x})/((1+x^2 )^(3/2) ))+C

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int\mathrm{e}^{\mathrm{x}} \centerdot\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{2}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}/\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{e}^{\mathrm{x}} \left\{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right\}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }+\mathrm{C} \\ $$

Question Number 124371    Answers: 2   Comments: 1

∫ ((e^x (2−sin 2x))/(1−cos 2x)) dx

$$\:\int\:\frac{{e}^{{x}} \left(\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}\right)}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}\:{dx}\: \\ $$

Question Number 124360    Answers: 1   Comments: 0

∫_( 0) ^( ∞) ((ln(x))/(x^4 +x^2 +1))dx

$$\int_{\:\mathrm{0}} ^{\:\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$

Question Number 124352    Answers: 0   Comments: 3

∫_0 ^(4π) ∥cosx∥=?

$$\underset{\mathrm{0}} {\overset{\mathrm{4}\pi} {\int}}\parallel{cosx}\parallel=? \\ $$

Question Number 124334    Answers: 1   Comments: 0

∫(√((cosx−cos^3 x)/((1−cos^3 x))))dx

$$\int\sqrt{\frac{\mathrm{cos}{x}−\mathrm{cos}^{\mathrm{3}} {x}}{\left(\mathrm{1}−\mathrm{cos}^{\mathrm{3}} {x}\right)}}\mathrm{d}{x} \\ $$

Question Number 124261    Answers: 3   Comments: 2

∫((2x^2 +5x+9)/((x+1)(√(x^2 +x+1))))dx

$$\int\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}}\mathrm{dx} \\ $$

Question Number 124252    Answers: 1   Comments: 0

o(x)=∫ (dx/(sec^3 x sin^4 x))

$$\:\:{o}\left({x}\right)=\int\:\frac{{dx}}{\mathrm{sec}\:^{\mathrm{3}} {x}\:\mathrm{sin}\:^{\mathrm{4}} {x}}\: \\ $$

Question Number 124251    Answers: 0   Comments: 1

∫_0 ^∞ (x^2 /(cosh x)) dx ?

$$\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}^{\mathrm{2}} }{\mathrm{cosh}\:{x}}\:{dx}\:? \\ $$

Question Number 124228    Answers: 2   Comments: 0

...::: nice calculus:::... evaluate I=∫_0 ^( ∞) ((cos(ln(x)))/(1+x^3 ))dx=....???

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...:::\:\:{nice}\:\:{calculus}:::... \\ $$$$\:\:\:\:\:\:{evaluate} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({ln}\left({x}\right)\right)}{\mathrm{1}+{x}^{\mathrm{3}} }{dx}=....??? \\ $$

Question Number 124217    Answers: 1   Comments: 0

∫_0 ^∞ (dx/(x (√(1+x^2 )))) ?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{dx}}{{x}\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:? \\ $$

Question Number 124202    Answers: 0   Comments: 0

::: nice calculus ::: prove that ::: Σ_(m,n=1) ^∞ {(((−1)^(n+m) )/(n^2 +m^2 ))} =^(???) (π^2 /(12)) −(π/4)ln(2)

$$\:\:\:\:\:\:\:\:\:\::::\:\:{nice}\:\:{calculus}\:::: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$ \\ $$$$\underset{{m},{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\left(−\mathrm{1}\right)^{{n}+{m}} }{{n}^{\mathrm{2}} +{m}^{\mathrm{2}} }\right\}\:\overset{???} {=}\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right) \\ $$

Question Number 124201    Answers: 2   Comments: 0

::: nice calculus ::: please prove ::: Ω = ∫_0 ^( ∞) (x^(1/2) /(x^2 +2x+5))dx=(π/( (√ϕ))) where ϕ is Golden ratio...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::::\:\:{nice}\:\:{calculus}\:::: \\ $$$$\:\:\:\:\:{please}\:\:{prove}\:::: \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx}=\frac{\pi}{\:\sqrt{\varphi}} \\ $$$$\:\:\:\:\:{where}\:\:\varphi\:\:{is}\:{Golden}\:{ratio}... \\ $$

Question Number 124135    Answers: 1   Comments: 0

B = ∫_0 ^2 [(√((4−x)/x)) − (√(x/(4−x))) ] dx

$$\:{B}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\left[\sqrt{\frac{\mathrm{4}−{x}}{{x}}}\:−\:\sqrt{\frac{{x}}{\mathrm{4}−{x}}}\:\right]\:{dx} \\ $$

Question Number 124134    Answers: 1   Comments: 0

ϕ(x)= ∫ (((x^3 +2)/x^3 )) (√(x−(1/x^2 ))) dx

$$\:\varphi\left({x}\right)=\:\int\:\left(\frac{{x}^{\mathrm{3}} +\mathrm{2}}{{x}^{\mathrm{3}} }\right)\:\sqrt{{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:{dx}\: \\ $$

Question Number 124101    Answers: 1   Comments: 0

∫(((x^(−6) −64)/(4+2x^(−1) +x^(−2) ))∙(x^2 /(4−4x^(−1) +x^(−2) ))−((4x^2 (2x+1))/(1−2x)))dx

$$\int\left(\frac{\mathrm{x}^{−\mathrm{6}} −\mathrm{64}}{\mathrm{4}+\mathrm{2x}^{−\mathrm{1}} +\mathrm{x}^{−\mathrm{2}} }\centerdot\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}−\mathrm{4x}^{−\mathrm{1}} +\mathrm{x}^{−\mathrm{2}} }−\frac{\mathrm{4x}^{\mathrm{2}} \left(\mathrm{2x}+\mathrm{1}\right)}{\mathrm{1}−\mathrm{2x}}\right)\mathrm{dx} \\ $$

Question Number 124063    Answers: 0   Comments: 0

find ∫∫_D ((arctan((√(x^2 +y^2 ))))/(x+y))dxdy D={(x,y) / 0≤x≤1 and 1≤y≤2}

$${find}\:\:\int\int_{{D}} \frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)}{{x}+{y}}{dxdy} \\ $$$${D}=\left\{\left({x},{y}\right)\:/\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$

Question Number 124062    Answers: 0   Comments: 0

find ∫_(π/2) ^(π/4) ((sin(nx))/(sin^n (x)))dx (n natural)

$${find}\:\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sin}\left({nx}\right)}{{sin}^{{n}} \left({x}\right)}{dx}\:\:\:\left({n}\:{natural}\right) \\ $$

Question Number 124059    Answers: 0   Comments: 0

find ∫_0 ^∞ ((x^3 sin(2x))/((x^2 +x+1)^3 ))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}} {sin}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 124046    Answers: 1   Comments: 0

φ(α) = ∫ ((6α^2 +30α+2)/(4α^2 +20α+25)) dα

$$\:\:\phi\left(\alpha\right)\:=\:\int\:\frac{\mathrm{6}\alpha^{\mathrm{2}} +\mathrm{30}\alpha+\mathrm{2}}{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{20}\alpha+\mathrm{25}}\:{d}\alpha\: \\ $$

  Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com