Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 126
Question Number 124531 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}+\mathrm{3}\right)^{\mathrm{5}} } \\ $$
Question Number 124530 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){dx}\:{snd}\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{{n}} \right){dx} \\ $$
Question Number 124482 Answers: 0 Comments: 0
$$\int\mathrm{e}^{\mathrm{sinx}} \left(\frac{\mathrm{xcos}^{\mathrm{2}} \mathrm{x}−\mathrm{sinx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\right)\mathrm{dx} \\ $$
Question Number 124452 Answers: 1 Comments: 1
$$\:\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}\:=\:{x}^{\mathrm{3}} −\mathrm{1}\: \\ $$
Question Number 124438 Answers: 1 Comments: 2
$$\int\mathrm{e}^{\left(\mathrm{xsinx}+\mathrm{cosx}\right)} \centerdot\left(\frac{\mathrm{x}^{\mathrm{4}} \mathrm{cos}^{\mathrm{3}} \mathrm{x}−\mathrm{xsinx}+\mathrm{cosx}}{\mathrm{x}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \mathrm{x}}\right)\mathrm{dx} \\ $$
Question Number 124432 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:{find}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{4}} \frac{{ln}\left({x}\right)}{\left(\mathrm{4}{x}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dx}=? \\ $$
Question Number 124430 Answers: 1 Comments: 0
$$\:\int\overset{\:\mathrm{5}} {\:}_{\mathrm{0}} \frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\left(\mathrm{5}−{x}\right)^{\mathrm{2}} }\:{dx}\:=?\: \\ $$
Question Number 124421 Answers: 0 Comments: 3
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int\mathrm{e}^{\mathrm{x}} \centerdot\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{2}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}/\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{e}^{\mathrm{x}} \left\{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right\}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }+\mathrm{C} \\ $$
Question Number 124371 Answers: 2 Comments: 1
$$\:\int\:\frac{{e}^{{x}} \left(\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}\right)}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}\:{dx}\: \\ $$
Question Number 124360 Answers: 1 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$
Question Number 124352 Answers: 0 Comments: 3
$$\underset{\mathrm{0}} {\overset{\mathrm{4}\pi} {\int}}\parallel{cosx}\parallel=? \\ $$
Question Number 124334 Answers: 1 Comments: 0
$$\int\sqrt{\frac{\mathrm{cos}{x}−\mathrm{cos}^{\mathrm{3}} {x}}{\left(\mathrm{1}−\mathrm{cos}^{\mathrm{3}} {x}\right)}}\mathrm{d}{x} \\ $$
Question Number 124261 Answers: 3 Comments: 2
$$\int\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}}\mathrm{dx} \\ $$
Question Number 124252 Answers: 1 Comments: 0
$$\:\:{o}\left({x}\right)=\int\:\frac{{dx}}{\mathrm{sec}\:^{\mathrm{3}} {x}\:\mathrm{sin}\:^{\mathrm{4}} {x}}\: \\ $$
Question Number 124251 Answers: 0 Comments: 1
$$\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}^{\mathrm{2}} }{\mathrm{cosh}\:{x}}\:{dx}\:? \\ $$
Question Number 124228 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...:::\:\:{nice}\:\:{calculus}:::... \\ $$$$\:\:\:\:\:\:{evaluate} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({ln}\left({x}\right)\right)}{\mathrm{1}+{x}^{\mathrm{3}} }{dx}=....??? \\ $$
Question Number 124217 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{dx}}{{x}\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:? \\ $$
Question Number 124202 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\::::\:\:{nice}\:\:{calculus}\:::: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$ \\ $$$$\underset{{m},{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\left(−\mathrm{1}\right)^{{n}+{m}} }{{n}^{\mathrm{2}} +{m}^{\mathrm{2}} }\right\}\:\overset{???} {=}\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right) \\ $$
Question Number 124201 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::::\:\:{nice}\:\:{calculus}\:::: \\ $$$$\:\:\:\:\:{please}\:\:{prove}\:::: \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx}=\frac{\pi}{\:\sqrt{\varphi}} \\ $$$$\:\:\:\:\:{where}\:\:\varphi\:\:{is}\:{Golden}\:{ratio}... \\ $$
Question Number 124135 Answers: 1 Comments: 0
$$\:{B}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\left[\sqrt{\frac{\mathrm{4}−{x}}{{x}}}\:−\:\sqrt{\frac{{x}}{\mathrm{4}−{x}}}\:\right]\:{dx} \\ $$
Question Number 124134 Answers: 1 Comments: 0
$$\:\varphi\left({x}\right)=\:\int\:\left(\frac{{x}^{\mathrm{3}} +\mathrm{2}}{{x}^{\mathrm{3}} }\right)\:\sqrt{{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:{dx}\: \\ $$
Question Number 124101 Answers: 1 Comments: 0
$$\int\left(\frac{\mathrm{x}^{−\mathrm{6}} −\mathrm{64}}{\mathrm{4}+\mathrm{2x}^{−\mathrm{1}} +\mathrm{x}^{−\mathrm{2}} }\centerdot\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}−\mathrm{4x}^{−\mathrm{1}} +\mathrm{x}^{−\mathrm{2}} }−\frac{\mathrm{4x}^{\mathrm{2}} \left(\mathrm{2x}+\mathrm{1}\right)}{\mathrm{1}−\mathrm{2x}}\right)\mathrm{dx} \\ $$
Question Number 124063 Answers: 0 Comments: 0
$${find}\:\:\int\int_{{D}} \frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)}{{x}+{y}}{dxdy} \\ $$$${D}=\left\{\left({x},{y}\right)\:/\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$
Question Number 124062 Answers: 0 Comments: 0
$${find}\:\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sin}\left({nx}\right)}{{sin}^{{n}} \left({x}\right)}{dx}\:\:\:\left({n}\:{natural}\right) \\ $$
Question Number 124059 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}} {sin}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 124046 Answers: 1 Comments: 0
$$\:\:\phi\left(\alpha\right)\:=\:\int\:\frac{\mathrm{6}\alpha^{\mathrm{2}} +\mathrm{30}\alpha+\mathrm{2}}{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{20}\alpha+\mathrm{25}}\:{d}\alpha\: \\ $$
Pg 121 Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129 Pg 130
Terms of Service
Privacy Policy
Contact: info@tinkutara.com