Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 125
Question Number 124906 Answers: 0 Comments: 1
$$\int\boldsymbol{{sinx}}^{\mathrm{3}} \boldsymbol{{dx}}=? \\ $$
Question Number 124903 Answers: 1 Comments: 0
Question Number 124888 Answers: 3 Comments: 0
$$:::::\:\:{prove}\:{that}\: \\ $$$$\:\:::::\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Question Number 124887 Answers: 1 Comments: 0
$$\:\:\:\:\:...{nice}\:\:{calculus}.. \\ $$$$\:\:\:{evaluate}\:: \\ $$$$\:\:\mathrm{2}\int_{\mathrm{1}} ^{\:\infty} \left(\frac{\left\{{x}\right\}−\frac{\mathrm{1}}{\mathrm{2}}}{{x}}\right){dx}−\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}=??? \\ $$$$\left\{{x}\right\}:\:{fractional}\:{part}... \\ $$
Question Number 124827 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:\:\:{calculus}\:... \\ $$$$\:\:\:\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{log}\left(\mathrm{1}+{tan}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx}=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}}\:\checkmark \\ $$$$ \\ $$
Question Number 124825 Answers: 0 Comments: 2
Question Number 124785 Answers: 0 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{a}} \int_{\:\mathrm{0}} ^{\:\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }} \frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{e}^{\mathrm{y}} \right)\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}\mathrm{dxdy} \\ $$$$ \\ $$
Question Number 124794 Answers: 1 Comments: 0
$${If}\:{f}\left({x}\right)=\begin{cases}{\mathrm{2}{x}\:;\:\mathrm{0}<{x}<\mathrm{1}}\\{\mathrm{3}\:;\:{x}=\mathrm{1}\:}\\{\mathrm{6}{x}−\mathrm{1}\:;\:\mathrm{1}<{x}<\mathrm{2}}\end{cases} \\ $$$${find}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{f}\left({x}\right)\:{dx}\:? \\ $$
Question Number 124853 Answers: 2 Comments: 0
$$\:\:\int_{\mathrm{1}} ^{\:{x}^{\mathrm{3}} +\mathrm{5}{x}} {f}\left({t}\right)\:{dt}\:=\:\mathrm{2}{x}\:\: \\ $$$$\:{then}\:{f}\left(\mathrm{18}\right)\:=? \\ $$
Question Number 124742 Answers: 0 Comments: 2
$$\int\frac{\mathrm{3}^{{t}} +\mathrm{11}}{\mathrm{6}^{{t}} +\mathrm{11}}{dt}\:\:\:\boldsymbol{{collected}}\:\boldsymbol{{problem}} \\ $$
Question Number 124738 Answers: 0 Comments: 3
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}... \\ $$$$\:{simple}\:{limit}:: \\ $$$$\:\:\:{lim}_{{n}\rightarrow\infty} \:\left\{\frac{\mathrm{1}^{{a}+\mathrm{1}} +\mathrm{2}^{{a}+\mathrm{1}} +...+{n}^{{a}+\mathrm{1}} }{{n}\left(\mathrm{1}^{{a}} +\mathrm{2}^{{a}} +....{n}^{{a}} \right)}\right\}=? \\ $$$$\:{where}\:{a}\:\neq−\mathrm{2}\:,\:−\mathrm{1} \\ $$
Question Number 124675 Answers: 0 Comments: 1
$$\int_{\mathrm{1}} ^{\mathrm{3}} \left({x}−\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{3}−{x}\right)^{\mathrm{2}} {dx} \\ $$
Question Number 124672 Answers: 1 Comments: 1
$$\int_{−\mathrm{3}} ^{−\mathrm{2}} \left({y}+\mathrm{3}\right)^{\mathrm{6}} \left({y}+\mathrm{2}\right)^{\mathrm{4}} {dy} \\ $$
Question Number 124654 Answers: 3 Comments: 1
$$\:\underset{\mathrm{1}/\sqrt{\mathrm{2}}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\frac{{e}^{\mathrm{cos}^{−\mathrm{1}} \left({x}\right)} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:?\: \\ $$
Question Number 124644 Answers: 2 Comments: 0
$$\underset{\mathrm{2}/\sqrt{\mathrm{3}}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:\left(\mathrm{sec}^{−\mathrm{1}} {x}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:{dx}\: \\ $$$$\underset{\:\sqrt{\mathrm{2}}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{sec}^{−\mathrm{1}} {x}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:{dx}\: \\ $$
Question Number 124632 Answers: 3 Comments: 0
$${Calculate}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}}\:{dx}\: \\ $$
Question Number 124624 Answers: 1 Comments: 0
$$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}}\:+\mathrm{4}{x}} \\ $$
Question Number 124608 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {sinx}^{{p}} \:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}^{{p}} }{{x}^{{q}} }{dx} \\ $$$${collected}\:{question} \\ $$
Question Number 124607 Answers: 2 Comments: 0
$$\int\frac{\boldsymbol{{dx}}}{\left(\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }\:=\:? \\ $$
Question Number 124594 Answers: 1 Comments: 1
$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{ln}\:\mathrm{2}} \frac{\mathrm{1}}{\mathrm{cosh}\left({x}\:+\:\mathrm{ln}\:\mathrm{4}\right)}\:{dx}\:=\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{33}}\right) \\ $$
Question Number 124587 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\blacktriangleleft::::\blacktriangleright\:{calculus} \\ $$$$\:\:\:\:\:{simple}\:\:{question}:: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{4}}{\:\sqrt{\mathrm{4}+{x}^{\mathrm{4}} }}\:{dx}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{sin}\left({x}\right)}}\:+\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{cos}\left({x}\right)}} \\ $$
Question Number 124579 Answers: 5 Comments: 0
$$\:\:{I}=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{dx}}{\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }\:? \\ $$
Question Number 124566 Answers: 4 Comments: 0
$$\:\int\:\frac{{dx}}{\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }\: \\ $$
Question Number 124542 Answers: 1 Comments: 1
$${help}\:\:\int\mathrm{3}{xdx} \\ $$
Question Number 124540 Answers: 2 Comments: 0
$$\int\frac{\mathrm{4}{x}+\mathrm{9}}{{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{10}}{dx} \\ $$
Question Number 124532 Answers: 5 Comments: 0
$$\:\int\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:? \\ $$
Pg 120 Pg 121 Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129
Terms of Service
Privacy Policy
Contact: info@tinkutara.com