Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 125

Question Number 124976    Answers: 2   Comments: 1

(1) The gravitational force (in lb) of attraction between two objects is given by F =(k/x^2 ), where x is the distance between the objects. If the objects are 10 ft apart, find the work required to separate them until they are 50 ft apart. Express the result in terms of k. (a) (k/(500)) (b) ((2k)/(25)) (c) (k/5) (d) (k/(40)) (2)One end of a pool is vertical wall 15 ft wide. What is the force exerted on this wall by the water if it is 6 ft deep? The density of water is 62.4 lb/ft^3 (a) 8420 lb (b) 33,700 lb (c) 2810 lb (d) 16,800 lb (3)Find the area of the surface generated by revolving the curve about that indicated axis. x = 3(√(4−y)) , 0≤y≤((15)/4) , y−axis (a) (((125)/2)+5(√(10)))π (b) (((125)/2)−5(√(10)))π (c) ((125)/2)π (d) 5π(√(10))

$$\left(\mathrm{1}\right)\:{The}\:{gravitational}\:{force}\:\left({in}\:{lb}\right)\:{of} \\ $$$${attraction}\:{between}\:{two}\:{objects}\:{is}\:{given} \\ $$$${by}\:{F}\:=\frac{{k}}{{x}^{\mathrm{2}} },\:{where}\:{x}\:{is}\:{the}\:{distance} \\ $$$${between}\:{the}\:{objects}.\:{If}\:{the}\:{objects}\:{are} \\ $$$$\mathrm{10}\:{ft}\:{apart},\:{find}\:{the}\:{work}\:{required}\:{to} \\ $$$${separate}\:{them}\:{until}\:{they}\:{are}\:\mathrm{50}\:{ft}\:{apart}.\:{Express} \\ $$$${the}\:{result}\:{in}\:{terms}\:{of}\:{k}. \\ $$$$\left({a}\right)\:\frac{{k}}{\mathrm{500}}\:\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{2}{k}}{\mathrm{25}}\:\:\:\:\:\left({c}\right)\:\frac{{k}}{\mathrm{5}}\:\:\:\left({d}\right)\:\frac{{k}}{\mathrm{40}} \\ $$$$\left(\mathrm{2}\right){One}\:{end}\:{of}\:{a}\:{pool}\:{is}\:{vertical}\:{wall}\:\mathrm{15}\:{ft} \\ $$$${wide}.\:{What}\:{is}\:{the}\:{force}\:{exerted}\:{on}\:{this} \\ $$$${wall}\:{by}\:{the}\:{water}\:{if}\:{it}\:{is}\:\mathrm{6}\:{ft}\:{deep}? \\ $$$${The}\:{density}\:{of}\:{water}\:{is}\:\mathrm{62}.\mathrm{4}\:{lb}/{ft}^{\mathrm{3}} \\ $$$$\left({a}\right)\:\mathrm{8420}\:{lb}\:\:\:\:\left({b}\right)\:\mathrm{33},\mathrm{700}\:{lb}\:\:\:\:\left({c}\right)\:\mathrm{2810}\:{lb}\:\:\left({d}\right)\:\mathrm{16},\mathrm{800}\:{lb} \\ $$$$\left(\mathrm{3}\right){Find}\:{the}\:{area}\:{of}\:{the}\:{surface}\:{generated} \\ $$$${by}\:{revolving}\:{the}\:{curve}\:{about}\:{that}\: \\ $$$${indicated}\:{axis}.\:\:{x}\:=\:\mathrm{3}\sqrt{\mathrm{4}−{y}}\:,\:\mathrm{0}\leqslant{y}\leqslant\frac{\mathrm{15}}{\mathrm{4}}\:,\:{y}−{axis} \\ $$$$\left({a}\right)\:\left(\frac{\mathrm{125}}{\mathrm{2}}+\mathrm{5}\sqrt{\mathrm{10}}\right)\pi\:\:\:\:\:\:\:\left({b}\right)\:\left(\frac{\mathrm{125}}{\mathrm{2}}−\mathrm{5}\sqrt{\mathrm{10}}\right)\pi \\ $$$$\left({c}\right)\:\frac{\mathrm{125}}{\mathrm{2}}\pi\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:\mathrm{5}\pi\sqrt{\mathrm{10}}\: \\ $$$$ \\ $$

Question Number 124957    Answers: 1   Comments: 1

Question Number 124922    Answers: 0   Comments: 0

let f(x)=((ln(1+2x))/(x^2 +1)) 1) calculste f^((n)) (x) and f^((n)) (0) 2)develop f at integr serie 3) find ∫_0 ^1 f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculste}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{develop}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 124921    Answers: 0   Comments: 0

calculate ∫_(−∞) ^(+∞) z^(−x^2 ) dx with z complex

$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\mathrm{z}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:\:\mathrm{with}\:\mathrm{z}\:\mathrm{complex} \\ $$

Question Number 124920    Answers: 2   Comments: 0

calculate ∫_0 ^∞ e^(−x^n ) dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{n}} } \mathrm{dx}\: \\ $$

Question Number 124919    Answers: 0   Comments: 2

find U_n =∫_0 ^1 x^n arctan(x)dx with n integr nstural

$$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \mathrm{arctan}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{nstural} \\ $$

Question Number 124906    Answers: 0   Comments: 1

∫sinx^3 dx=?

$$\int\boldsymbol{{sinx}}^{\mathrm{3}} \boldsymbol{{dx}}=? \\ $$

Question Number 124903    Answers: 1   Comments: 0

Question Number 124888    Answers: 3   Comments: 0

::::: prove that :::: φ=∫_0 ^( ∞) ((arctan(x^2 ))/x^2 )dx=(π/( (√2)))

$$:::::\:\:{prove}\:{that}\: \\ $$$$\:\:::::\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Question Number 124887    Answers: 1   Comments: 0

...nice calculus.. evaluate : 2∫_1 ^( ∞) ((({x}−(1/2))/x))dx−∫_0 ^( 1) ln(Γ(x))dx=??? {x}: fractional part...

$$\:\:\:\:\:...{nice}\:\:{calculus}.. \\ $$$$\:\:\:{evaluate}\:: \\ $$$$\:\:\mathrm{2}\int_{\mathrm{1}} ^{\:\infty} \left(\frac{\left\{{x}\right\}−\frac{\mathrm{1}}{\mathrm{2}}}{{x}}\right){dx}−\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}=??? \\ $$$$\left\{{x}\right\}:\:{fractional}\:{part}... \\ $$

Question Number 124827    Answers: 2   Comments: 0

.... nice calculus ... prove that:: ∫_0 ^( (π/2)) ((log(1+tan(x)))/(tan(x)))dx=((5π^2 )/(48)) ✓

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:\:\:{calculus}\:... \\ $$$$\:\:\:\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{log}\left(\mathrm{1}+{tan}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx}=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}}\:\checkmark \\ $$$$ \\ $$

Question Number 124825    Answers: 0   Comments: 2

Question Number 124785    Answers: 0   Comments: 0

∫_( 0) ^( a) ∫_( 0) ^( (√(a^2 −x^2 ))) (1/((1+e^y )(√(a^2 −x^2 −y^2 ))))dxdy

$$\int_{\:\mathrm{0}} ^{\:\mathrm{a}} \int_{\:\mathrm{0}} ^{\:\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }} \frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{e}^{\mathrm{y}} \right)\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}\mathrm{dxdy} \\ $$$$ \\ $$

Question Number 124794    Answers: 1   Comments: 0

If f(x)= { ((2x ; 0<x<1)),((3 ; x=1 )),((6x−1 ; 1<x<2)) :} find ∫_0 ^2 f(x) dx ?

$${If}\:{f}\left({x}\right)=\begin{cases}{\mathrm{2}{x}\:;\:\mathrm{0}<{x}<\mathrm{1}}\\{\mathrm{3}\:;\:{x}=\mathrm{1}\:}\\{\mathrm{6}{x}−\mathrm{1}\:;\:\mathrm{1}<{x}<\mathrm{2}}\end{cases} \\ $$$${find}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{f}\left({x}\right)\:{dx}\:? \\ $$

Question Number 124853    Answers: 2   Comments: 0

∫_1 ^( x^3 +5x) f(t) dt = 2x then f(18) =?

$$\:\:\int_{\mathrm{1}} ^{\:{x}^{\mathrm{3}} +\mathrm{5}{x}} {f}\left({t}\right)\:{dt}\:=\:\mathrm{2}{x}\:\: \\ $$$$\:{then}\:{f}\left(\mathrm{18}\right)\:=? \\ $$

Question Number 124742    Answers: 0   Comments: 2

∫((3^t +11)/(6^t +11))dt collected problem

$$\int\frac{\mathrm{3}^{{t}} +\mathrm{11}}{\mathrm{6}^{{t}} +\mathrm{11}}{dt}\:\:\:\boldsymbol{{collected}}\:\boldsymbol{{problem}} \\ $$

Question Number 124738    Answers: 0   Comments: 3

...nice calculus... simple limit:: lim_(n→∞) {((1^(a+1) +2^(a+1) +...+n^(a+1) )/(n(1^a +2^a +....n^a )))}=? where a ≠−2 , −1

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}... \\ $$$$\:{simple}\:{limit}:: \\ $$$$\:\:\:{lim}_{{n}\rightarrow\infty} \:\left\{\frac{\mathrm{1}^{{a}+\mathrm{1}} +\mathrm{2}^{{a}+\mathrm{1}} +...+{n}^{{a}+\mathrm{1}} }{{n}\left(\mathrm{1}^{{a}} +\mathrm{2}^{{a}} +....{n}^{{a}} \right)}\right\}=? \\ $$$$\:{where}\:{a}\:\neq−\mathrm{2}\:,\:−\mathrm{1} \\ $$

Question Number 124675    Answers: 0   Comments: 1

∫_1 ^3 (x−1)^3 (3−x)^2 dx

$$\int_{\mathrm{1}} ^{\mathrm{3}} \left({x}−\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{3}−{x}\right)^{\mathrm{2}} {dx} \\ $$

Question Number 124672    Answers: 1   Comments: 1

∫_(−3) ^(−2) (y+3)^6 (y+2)^4 dy

$$\int_{−\mathrm{3}} ^{−\mathrm{2}} \left({y}+\mathrm{3}\right)^{\mathrm{6}} \left({y}+\mathrm{2}\right)^{\mathrm{4}} {dy} \\ $$

Question Number 124654    Answers: 3   Comments: 1

∫_(1/(√2)) ^(1/2) (e^(cos^(−1) (x)) /( (√(1−x^2 )))) dx ?

$$\:\underset{\mathrm{1}/\sqrt{\mathrm{2}}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\frac{{e}^{\mathrm{cos}^{−\mathrm{1}} \left({x}\right)} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:?\: \\ $$

Question Number 124644    Answers: 2   Comments: 0

∫_(2/(√3)) ^2 ((cos (sec^(−1) x))/(x(√(x^2 −1)))) dx ∫_( (√2)) ^2 ((sec^2 (sec^(−1) x))/(x(√(x^2 −1)))) dx

$$\underset{\mathrm{2}/\sqrt{\mathrm{3}}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:\left(\mathrm{sec}^{−\mathrm{1}} {x}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:{dx}\: \\ $$$$\underset{\:\sqrt{\mathrm{2}}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{sec}^{−\mathrm{1}} {x}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:{dx}\: \\ $$

Question Number 124632    Answers: 3   Comments: 0

Calculate ∫_0 ^2 (√((2+x)/(2−x))) dx

$${Calculate}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}}\:{dx}\: \\ $$

Question Number 124624    Answers: 1   Comments: 0

∫ (dx/( (x)^(1/3) +4x))

$$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}}\:+\mathrm{4}{x}} \\ $$

Question Number 124608    Answers: 2   Comments: 0

∫_0 ^∞ sinx^p dx ∫_0 ^∞ ((sinx^p )/x^q )dx collected question

$$\int_{\mathrm{0}} ^{\infty} {sinx}^{{p}} \:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}^{{p}} }{{x}^{{q}} }{dx} \\ $$$${collected}\:{question} \\ $$

Question Number 124607    Answers: 2   Comments: 0

∫(dx/((x^3 +1)^2 )) = ?

$$\int\frac{\boldsymbol{{dx}}}{\left(\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }\:=\:? \\ $$

Question Number 124594    Answers: 1   Comments: 1

Show that ∫_0 ^(ln 2) (1/(cosh(x + ln 4))) dx = 2 tan^(−1) ((4/(33)))

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{ln}\:\mathrm{2}} \frac{\mathrm{1}}{\mathrm{cosh}\left({x}\:+\:\mathrm{ln}\:\mathrm{4}\right)}\:{dx}\:=\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{33}}\right) \\ $$

  Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com