Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 125

Question Number 125390    Answers: 2   Comments: 0

nice calculus... evaluate ::::↷ Ω=∫_0 ^( ∞) (((√x) tan^(−1) (x))/(1+x^2 ))dx=???

$$\:\:\:\:\:\:\:\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:{evaluate}\:::::\curvearrowright \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\sqrt{{x}}\:{tan}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=??? \\ $$

Question Number 125381    Answers: 0   Comments: 0

F(x) = cos (∫_1 ^x cos (∫_1 ^t sin^3 u du )dy) ((dF(x))/dx) = ?

$$\:{F}\left({x}\right)\:=\:\mathrm{cos}\:\left(\underset{\mathrm{1}} {\overset{{x}} {\int}}\:\mathrm{cos}\:\left(\underset{\mathrm{1}} {\overset{{t}} {\int}}\:\mathrm{sin}\:^{\mathrm{3}} {u}\:{du}\:\right){dy}\right) \\ $$$$\:\frac{{dF}\left({x}\right)}{{dx}}\:=\:?\: \\ $$

Question Number 125346    Answers: 4   Comments: 1

∫ x (√(1−x^4 )) dx??

$$\:\int\:{x}\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }\:{dx}?? \\ $$

Question Number 125336    Answers: 2   Comments: 0

... nice calculus ... evaluate : φ=∫_(0 ) ^( 1) x^2 ln(x).ln(1−x)dx =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}\:... \\ $$$$\:\:{evaluate}\:: \\ $$$$\:\:\:\phi=\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {x}^{\mathrm{2}} {ln}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right){dx}\:=? \\ $$$$ \\ $$

Question Number 125313    Answers: 3   Comments: 0

β(x)=∫ (x^3 /( (√(1−x^2 )))) dx

$$\:\:\:\beta\left({x}\right)=\int\:\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\: \\ $$

Question Number 125276    Answers: 2   Comments: 0

∫_0 ^1 ((x^9 −1)/(lnx))dx=???

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}^{\mathrm{9}} −\mathrm{1}}{{lnx}}{dx}=??? \\ $$

Question Number 125234    Answers: 0   Comments: 1

calculate ∫_0 ^1 (dx/(x+2+(√(x^2 +x+1))))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{dx}}{\mathrm{x}+\mathrm{2}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}} \\ $$

Question Number 125233    Answers: 0   Comments: 0

calculate u_(nm) =∫_0 ^∞ e^(−nx) ln(1+e^(mx) )dx find Σ_(n≥0 and m≥0) u_(nm)

$$\mathrm{calculate}\:\mathrm{u}_{\mathrm{nm}} =\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{nx}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{mx}} \right)\mathrm{dx} \\ $$$$\mathrm{find}\:\sum_{\mathrm{n}\geqslant\mathrm{0}\:\mathrm{and}\:\mathrm{m}\geqslant\mathrm{0}} \:\:\mathrm{u}_{\mathrm{nm}} \\ $$

Question Number 125194    Answers: 1   Comments: 0

∫ (((1−(√(x^2 +x+1)))^2 )/(x^2 (√(x^2 +x+1)))) dx ?

$$\:\int\:\frac{\left(\mathrm{1}−\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} \:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}\:{dx}\:? \\ $$

Question Number 125187    Answers: 1   Comments: 0

∫ (dx/( (√(sin^3 x)) (√(cos^5 x)))) ?

$$\:\:\int\:\frac{{dx}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}\:\sqrt{\mathrm{cos}\:^{\mathrm{5}} {x}}}\:? \\ $$

Question Number 125146    Answers: 3   Comments: 0

1)calculate ∫_0 ^(2π) (dθ/(x^2 −2x cosθ +1)) 2) calculate ∫_0 ^(2π) ((cosθ)/((x^2 −2xcosθ +1)^2 ))dθ

$$\left.\mathrm{1}\right)\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{d}\theta}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}\:\mathrm{cos}\theta\:+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{cos}\theta}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{d}\theta \\ $$

Question Number 125133    Answers: 3   Comments: 0

... ◂advanced calculus▶... prove that ::: Ω=∫_0 ^( 1) {((cos(log(x))−1)/(log(x)))}dx=((log(2))/2) ...∗adopted from youtube∗... ∗ ∗ youtube solution is not considered ∗ ∗

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\blacktriangleleft{advanced}\:\:\:{calculus}\blacktriangleright... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{{cos}\left({log}\left({x}\right)\right)−\mathrm{1}}{{log}\left({x}\right)}\right\}{dx}=\frac{{log}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:...\ast{adopted}\:{from}\:{youtube}\ast...\:\:\: \\ $$$$\:\ast\:\ast\:{youtube}\:{solution}\:{is}\:{not}\:{considered}\:\ast\:\ast \\ $$$$\:\: \\ $$

Question Number 125125    Answers: 0   Comments: 1

∫_(π/6) ((s^(π/3) inx )/x)dx=?

$$\underset{\frac{\pi}{\mathrm{6}}} {\int}\frac{\overset{\frac{\pi}{\mathrm{3}}} {{s}inx}\:}{{x}}{dx}=? \\ $$

Question Number 125114    Answers: 2   Comments: 1

solve ∫ (dx/((x^3 −1)^2 )) ?

$$\:{solve}\:\int\:\frac{{dx}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} }\:? \\ $$

Question Number 125098    Answers: 1   Comments: 1

...nice calculus ... prove that :: Apery′s constant φ=∫_0 ^( 1) {(4x^2 +4^2 x^2^2 +4^3 x^2^3 +...)((ln^2 (x))/(x(1+x)))}dx =2ζ(3)−1

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}\:... \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:::\:{Apery}'{s}\:{constant} \\ $$$$\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} {x}^{\mathrm{2}^{\mathrm{2}} } +\mathrm{4}^{\mathrm{3}} {x}^{\mathrm{2}^{\mathrm{3}} } +...\right)\frac{{ln}^{\mathrm{2}} \left({x}\right)}{{x}\left(\mathrm{1}+{x}\right)}\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\zeta\left(\mathrm{3}\right)−\mathrm{1} \\ $$

Question Number 125096    Answers: 1   Comments: 0

... nice calculus... suppose :: z =x−iy & (z)^(1/3) =p+iq then find :: A=(((x/p)+(y/q))/(p^2 +q^2 )) =?? note : i=(√(−1))

$$\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:\:{calculus}... \\ $$$$\:\:\:\:{suppose}\:::\:{z}\:={x}−{iy}\:\:\&\:\sqrt[{\mathrm{3}}]{{z}}\:={p}+{iq} \\ $$$$\:\:\:{then}\:\:{find}\:::\:\:\:{A}=\frac{\frac{{x}}{{p}}+\frac{{y}}{{q}}}{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:=?? \\ $$$$\:{note}\::\:{i}=\sqrt{−\mathrm{1}} \\ $$

Question Number 125053    Answers: 2   Comments: 1

∫ (dx/( (√(x^2 +3x−4)))) =?

$$\:\:\int\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{4}}}\:=? \\ $$

Question Number 125052    Answers: 0   Comments: 3

A rescue cable attached to a helicopter′s weighs 2 lb/ft. A man 180−lb grabs the end of the rope and his pulled from the ocean into the helicopter. How much work is done in lifting the man if the helicopter is 40 ft above the water ? (a) 8800 lb−ft (b) 1780 lb−ft (c) 7280 lb−ft (d) 10,400 lb−ft

$$\:{A}\:{rescue}\:{cable}\:{attached}\:{to}\:{a}\: \\ $$$${helicopter}'{s}\:{weighs}\:\mathrm{2}\:{lb}/{ft}.\: \\ $$$${A}\:{man}\:\mathrm{180}−{lb}\:{grabs}\:{the}\:{end}\: \\ $$$${of}\:{the}\:{rope}\:{and}\:{his}\:{pulled}\: \\ $$$${from}\:{the}\:{ocean}\:{into}\:{the}\:{helicopter}. \\ $$$${How}\:{much}\:{work}\:{is}\:{done}\:{in}\: \\ $$$${lifting}\:{the}\:{man}\:{if}\:{the}\:{helicopter} \\ $$$${is}\:\mathrm{40}\:{ft}\:{above}\:{the}\:{water}\:? \\ $$$$\left({a}\right)\:\mathrm{8800}\:{lb}−{ft} \\ $$$$\left({b}\right)\:\mathrm{1780}\:{lb}−{ft} \\ $$$$\left({c}\right)\:\mathrm{7280}\:{lb}−{ft} \\ $$$$\left({d}\right)\:\mathrm{10},\mathrm{400}\:{lb}−{ft} \\ $$

Question Number 125050    Answers: 1   Comments: 0

∫_0 ^π (e^(cos x) /(e^(cos x) +e^(−cos x) )) dx =?

$$\:\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{e}^{\mathrm{cos}\:{x}} }{{e}^{\mathrm{cos}\:{x}} +{e}^{−\mathrm{cos}\:{x}} }\:{dx}\:=?\: \\ $$

Question Number 125048    Answers: 0   Comments: 1

It takes a force of 19,000 lb to compress a spring from its free height of 15 in to its fully compressed height of 10 in. How much work does it take to compress the spring the first in? (a) 1900 in.−lb (b) 950 in.−lb (c) 3800 in.−lb (d) 190,000 in.−lb

$${It}\:{takes}\:{a}\:{force}\:{of}\:\mathrm{19},\mathrm{000}\:{lb}\:{to} \\ $$$${compress}\:{a}\:{spring}\:{from}\:{its}\:{free} \\ $$$${height}\:{of}\:\mathrm{15}\:{in}\:{to}\:{its}\:{fully}\: \\ $$$${compressed}\:{height}\:{of}\:\mathrm{10}\:{in}.\:{How} \\ $$$${much}\:\:{work}\:{does}\:{it}\:{take}\:{to}\: \\ $$$${compress}\:{the}\:{spring}\:{the}\:{first}\:{in}? \\ $$$$\left({a}\right)\:\mathrm{1900}\:{in}.−{lb} \\ $$$$\left({b}\right)\:\mathrm{950}\:{in}.−{lb} \\ $$$$\left({c}\right)\:\mathrm{3800}\:{in}.−{lb} \\ $$$$\left({d}\right)\:\mathrm{190},\mathrm{000}\:{in}.−{lb} \\ $$

Question Number 125034    Answers: 0   Comments: 1

find ∫_0 ^(π/2) (x/(sinx))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{x}}{\mathrm{sinx}}\mathrm{dx} \\ $$

Question Number 124985    Answers: 1   Comments: 3

Question Number 124980    Answers: 1   Comments: 0

find ∫ (dx/(((√(x−1))+2(√(x+1)))^2 ))

$$\mathrm{find}\:\int\:\:\frac{\mathrm{dx}}{\left(\sqrt{\mathrm{x}−\mathrm{1}}+\mathrm{2}\sqrt{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{2}} } \\ $$

Question Number 124979    Answers: 4   Comments: 0

let f(x)=arctan(x^n ) with n natural 1) find f^((n)) (0) and f^((n)) (1) 2)developp f at integr serie 3)calculte ∫_0 ^∞ ((f(x))/x^n )dx with n≥2

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{arctan}\left(\mathrm{x}^{\mathrm{n}} \right)\:\mathrm{with}\:\mathrm{n}\:\mathrm{natural} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\mathrm{calculte}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\mathrm{with}\:\mathrm{n}\geqslant\mathrm{2} \\ $$

Question Number 124976    Answers: 2   Comments: 1

(1) The gravitational force (in lb) of attraction between two objects is given by F =(k/x^2 ), where x is the distance between the objects. If the objects are 10 ft apart, find the work required to separate them until they are 50 ft apart. Express the result in terms of k. (a) (k/(500)) (b) ((2k)/(25)) (c) (k/5) (d) (k/(40)) (2)One end of a pool is vertical wall 15 ft wide. What is the force exerted on this wall by the water if it is 6 ft deep? The density of water is 62.4 lb/ft^3 (a) 8420 lb (b) 33,700 lb (c) 2810 lb (d) 16,800 lb (3)Find the area of the surface generated by revolving the curve about that indicated axis. x = 3(√(4−y)) , 0≤y≤((15)/4) , y−axis (a) (((125)/2)+5(√(10)))π (b) (((125)/2)−5(√(10)))π (c) ((125)/2)π (d) 5π(√(10))

$$\left(\mathrm{1}\right)\:{The}\:{gravitational}\:{force}\:\left({in}\:{lb}\right)\:{of} \\ $$$${attraction}\:{between}\:{two}\:{objects}\:{is}\:{given} \\ $$$${by}\:{F}\:=\frac{{k}}{{x}^{\mathrm{2}} },\:{where}\:{x}\:{is}\:{the}\:{distance} \\ $$$${between}\:{the}\:{objects}.\:{If}\:{the}\:{objects}\:{are} \\ $$$$\mathrm{10}\:{ft}\:{apart},\:{find}\:{the}\:{work}\:{required}\:{to} \\ $$$${separate}\:{them}\:{until}\:{they}\:{are}\:\mathrm{50}\:{ft}\:{apart}.\:{Express} \\ $$$${the}\:{result}\:{in}\:{terms}\:{of}\:{k}. \\ $$$$\left({a}\right)\:\frac{{k}}{\mathrm{500}}\:\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{2}{k}}{\mathrm{25}}\:\:\:\:\:\left({c}\right)\:\frac{{k}}{\mathrm{5}}\:\:\:\left({d}\right)\:\frac{{k}}{\mathrm{40}} \\ $$$$\left(\mathrm{2}\right){One}\:{end}\:{of}\:{a}\:{pool}\:{is}\:{vertical}\:{wall}\:\mathrm{15}\:{ft} \\ $$$${wide}.\:{What}\:{is}\:{the}\:{force}\:{exerted}\:{on}\:{this} \\ $$$${wall}\:{by}\:{the}\:{water}\:{if}\:{it}\:{is}\:\mathrm{6}\:{ft}\:{deep}? \\ $$$${The}\:{density}\:{of}\:{water}\:{is}\:\mathrm{62}.\mathrm{4}\:{lb}/{ft}^{\mathrm{3}} \\ $$$$\left({a}\right)\:\mathrm{8420}\:{lb}\:\:\:\:\left({b}\right)\:\mathrm{33},\mathrm{700}\:{lb}\:\:\:\:\left({c}\right)\:\mathrm{2810}\:{lb}\:\:\left({d}\right)\:\mathrm{16},\mathrm{800}\:{lb} \\ $$$$\left(\mathrm{3}\right){Find}\:{the}\:{area}\:{of}\:{the}\:{surface}\:{generated} \\ $$$${by}\:{revolving}\:{the}\:{curve}\:{about}\:{that}\: \\ $$$${indicated}\:{axis}.\:\:{x}\:=\:\mathrm{3}\sqrt{\mathrm{4}−{y}}\:,\:\mathrm{0}\leqslant{y}\leqslant\frac{\mathrm{15}}{\mathrm{4}}\:,\:{y}−{axis} \\ $$$$\left({a}\right)\:\left(\frac{\mathrm{125}}{\mathrm{2}}+\mathrm{5}\sqrt{\mathrm{10}}\right)\pi\:\:\:\:\:\:\:\left({b}\right)\:\left(\frac{\mathrm{125}}{\mathrm{2}}−\mathrm{5}\sqrt{\mathrm{10}}\right)\pi \\ $$$$\left({c}\right)\:\frac{\mathrm{125}}{\mathrm{2}}\pi\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:\mathrm{5}\pi\sqrt{\mathrm{10}}\: \\ $$$$ \\ $$

Question Number 124957    Answers: 1   Comments: 1

  Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com