Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 120
Question Number 127815 Answers: 0 Comments: 1
Question Number 127789 Answers: 0 Comments: 8
Question Number 127779 Answers: 2 Comments: 0
$${find}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} } \\ $$
Question Number 127777 Answers: 1 Comments: 0
$${explicite}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{{x}^{\mathrm{2}} −{x}+{a}}{dx} \\ $$$${with}\:\:\:{a}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 127776 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 127775 Answers: 1 Comments: 0
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {lnxdx}=−\gamma \\ $$
Question Number 127774 Answers: 2 Comments: 0
$${calculate}\:\:{u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$
Question Number 127772 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dx}}{\left({cosx}\:+\mathrm{2}{sinx}\right)^{\mathrm{2}} } \\ $$
Question Number 127732 Answers: 0 Comments: 0
$${z}={x}+{iy} \\ $$$${why}\:\frac{{f}\left({z}\right)}{{z}−{a}}\:{not}\:{analytical}?\:/\:{not}\:{analytical}\:{at}\:{z}={a}? \\ $$$$ \\ $$
Question Number 127704 Answers: 1 Comments: 0
$$ \\ $$$${if}\:{f}\left({x}\right)=\begin{cases}{{x}−{n}\:;\:\mathrm{2}{n}\:\leqslant\:{x}\:\leqslant\mathrm{2}{n}+\mathrm{1}}\\{{n}+\mathrm{1}\:;\:\mathrm{2}{n}+\mathrm{1}\leqslant{x}\leqslant\mathrm{2}{n}+\mathrm{2}\:}\end{cases}\:{where}\:\:{n}\:=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},..,\mathrm{9} \\ $$$${find}\:\int_{\mathrm{0}} ^{\mathrm{20}} {f}\left({x}\right){dx} \\ $$
Question Number 127679 Answers: 0 Comments: 0
$${its}\:\mathrm{9}:\mathrm{30}{pm}\:{in}\:{Cameroon} \\ $$
Question Number 127631 Answers: 0 Comments: 0
$${Let}\:{f}\in{C}^{\infty} \left(\mathbb{R},\mathbb{R}\right)\:,\:\forall\:{n}\in\mathbb{N}\:\:\:{M}_{{n}} =\mid\mid{f}^{\left({n}\right)} \mid\mid_{\infty} \:\: \\ $$$${and}\:\:{u}_{{n}} =\frac{\mathrm{2}^{{n}−\mathrm{1}} {M}_{{n}} }{{M}_{{n}−\mathrm{1}} }\:\:\:{for}\:{n}\geqslant\mathrm{1}\: \\ $$$${Show}\:{that}\:{if}\:\:\:{M}_{\mathrm{1}} <\sqrt{\mathrm{2}{M}_{\mathrm{0}} {M}_{\mathrm{2}} }\:{then}\:{u}_{{n}} <{u}_{{n}+\mathrm{1}} \:{for}\:{n}\geqslant\mathrm{1} \\ $$
Question Number 127618 Answers: 2 Comments: 0
$$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2021}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{2020}} \right)}\:?\: \\ $$
Question Number 127616 Answers: 0 Comments: 1
$$\:\mathrm{If}\:\int_{\mathrm{1}} ^{\:\mathrm{4}} \mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{6}\:,\:\mathrm{then}\:\int_{\mathrm{1}} ^{\:\mathrm{4}} \mathrm{f}\left(\mathrm{5}−\mathrm{x}\right)\:\mathrm{dx}\:?\: \\ $$
Question Number 127605 Answers: 1 Comments: 0
$${find}\:{arg}\left({z}\right) \\ $$$${where}\:\boldsymbol{{z}}=\mathrm{1}+\boldsymbol{{cos}}\alpha+{icos}\beta \\ $$
Question Number 127604 Answers: 2 Comments: 0
Question Number 127587 Answers: 1 Comments: 0
Question Number 127575 Answers: 1 Comments: 0
$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{n}} \mathrm{dt} \\ $$
Question Number 127543 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2021}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\mathrm{dx} \\ $$
Question Number 127539 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}... \\ $$$$\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:{dx}=? \\ $$$$ \\ $$
Question Number 127528 Answers: 3 Comments: 0
$$\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$
Question Number 127495 Answers: 1 Comments: 0
Question Number 127468 Answers: 3 Comments: 1
$$\:\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{x}^{\mathrm{3}} \:\mathrm{sin}\:\left(\lambda\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} +\mathrm{4}}\:\mathrm{dx}\:=?\: \\ $$
Question Number 127446 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...{challanging}\:\:{integral}... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \left({cos}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} \:}\right)\frac{{dx}}{{x}}\:=\:−\gamma\:\: \\ $$$$ \\ $$
Question Number 127432 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathrm{CALCULUS}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\varnothing=\int_{−\infty} ^{\:+\infty} {cos}\left(\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}\right){dx}=? \\ $$$$ \\ $$
Question Number 127420 Answers: 1 Comments: 0
$$\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}−\mathrm{1}}{\:\sqrt{\mathrm{2}^{{x}} −\mathrm{1}}\:\mathrm{ln}\:\left(\mathrm{2}^{{x}} −\mathrm{1}\right)}\:{dx}\:? \\ $$
Pg 115 Pg 116 Pg 117 Pg 118 Pg 119 Pg 120 Pg 121 Pg 122 Pg 123 Pg 124
Terms of Service
Privacy Policy
Contact: info@tinkutara.com