Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 118

Question Number 128680    Answers: 1   Comments: 0

...nice calculus... Σ_(n=0) ^∞ (1/((3n+1)ϕ^(3n+1) )) =? ϕ :: golden ratio...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\varphi^{\mathrm{3}{n}+\mathrm{1}} }\:=? \\ $$$$\varphi\:::\:\:{golden}\:\:{ratio}... \\ $$$$ \\ $$

Question Number 128664    Answers: 2   Comments: 0

∫_0 ^( π/2) (1−sin x+sin^2 x−sin^3 x+sin^4 x−sin^5 x+...) dx =?

$$\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{5}} \mathrm{x}+...\right)\:\mathrm{dx}\:=? \\ $$

Question Number 128634    Answers: 1   Comments: 0

θ = ∫ (1+4x^4 )e^x^4 dx

$$\theta\:=\:\int\:\left(\mathrm{1}+\mathrm{4x}^{\mathrm{4}} \right)\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \:\mathrm{dx}\: \\ $$

Question Number 128633    Answers: 2   Comments: 0

Ω = ∫_0 ^( (1/3)) x^(2n) ln(1−x)dx

$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{x}^{\mathrm{2n}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 128620    Answers: 1   Comments: 0

Question Number 128610    Answers: 1   Comments: 1

∫_(−π/4) ^( π/4) ((sec x)/(e^x +1)) dx

$$\int_{−\pi/\mathrm{4}} ^{\:\pi/\mathrm{4}} \frac{\mathrm{sec}\:\mathrm{x}}{\mathrm{e}^{\mathrm{x}} +\mathrm{1}}\:\mathrm{dx}\: \\ $$

Question Number 128608    Answers: 1   Comments: 0

∫ x^2 .tan^(−1) ((x/2))dx=?

$$\int\:\mathrm{x}^{\mathrm{2}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx}=? \\ $$

Question Number 128602    Answers: 1   Comments: 0

∫_(−1) ^1 ∫_0 ^(1−x) (√((x^(2/3) y−x^(5/3) y−x^(2/3) y^2 )/y^2 ))dydx

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}−{x}} \sqrt{\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} {y}−{x}^{\frac{\mathrm{5}}{\mathrm{3}}} {y}−{x}^{\frac{\mathrm{2}}{\mathrm{3}}} {y}^{\mathrm{2}} }{{y}^{\mathrm{2}} }}{dydx} \\ $$$$ \\ $$

Question Number 128575    Answers: 3   Comments: 3

∫(√(x^2 +4x+13))dx=??

$$\int\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}{dx}=?? \\ $$

Question Number 128570    Answers: 0   Comments: 0

... mathematical analysis... if ′′ f ′′ is Reimann integrable function on [a , b ] , then prove:: lim_(t→∞ ) {∫_a ^( b) f(x)cos(tx)dx }=0 ..Reimann−Lebesgue theorem...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{mathematical}\:\:{analysis}... \\ $$$$\:\:{if}\:''\:\:{f}\:\:\:''\:\:{is}\:\mathscr{R}{eimann}\:{integrable} \\ $$$$\:\:\:{function}\:\:{on}\:\left[{a}\:,\:{b}\:\right]\:,\:{then}\:{prove}:: \\ $$$$\:\:\:\:\: \\ $$$$\:\:{lim}_{{t}\rightarrow\infty\:} \left\{\int_{{a}} ^{\:{b}} {f}\left({x}\right){cos}\left({tx}\right){dx}\:\right\}=\mathrm{0} \\ $$$$\:\:..\mathscr{R}{eimann}−\mathscr{L}{ebesgue}\:\:{theorem}... \\ $$$$ \\ $$

Question Number 128542    Answers: 1   Comments: 0

∫ (((x^4 −x)^(1/4) )/x^5 ) dx =?

$$\:\int\:\frac{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}\right)^{\mathrm{1}/\mathrm{4}} }{\mathrm{x}^{\mathrm{5}} }\:\mathrm{dx}\:=? \\ $$

Question Number 128540    Answers: 1   Comments: 1

If f(x)=lim_(x→∞) ((x^n −x^(−n) )/(x^n +x^(−n) )) ,x>1 then ∫ ((xf(x) ln (x+(√(1+x^2 )) ))/( (√(1+x^2 )))) dx =?

$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{n}} −\mathrm{x}^{−\mathrm{n}} }{\mathrm{x}^{\mathrm{n}} +\mathrm{x}^{−\mathrm{n}} }\:,\mathrm{x}>\mathrm{1} \\ $$$$\mathrm{then}\:\int\:\frac{\mathrm{xf}\left(\mathrm{x}\right)\:\mathrm{ln}\:\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right)}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=? \\ $$

Question Number 128529    Answers: 1   Comments: 2

Question Number 128511    Answers: 1   Comments: 0

H=∫ ((2017x^(2016) +2018x^(2017) )/(1+x^(4034) +2x^(4035) +x^(4036) )) dx

$$\:\mathcal{H}=\int\:\frac{\mathrm{2017x}^{\mathrm{2016}} +\mathrm{2018x}^{\mathrm{2017}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4034}} +\mathrm{2x}^{\mathrm{4035}} +\mathrm{x}^{\mathrm{4036}} }\:\mathrm{dx}\: \\ $$

Question Number 128499    Answers: 1   Comments: 0

find u_n =∫_1 ^∞ (([ne^(−x) ])/n^3 )dx

$$\mathrm{find}\:\:\mathrm{u}_{\mathrm{n}} =\int_{\mathrm{1}} ^{\infty} \:\:\frac{\left[\mathrm{ne}^{−\mathrm{x}} \right]}{\mathrm{n}^{\mathrm{3}} }\mathrm{dx} \\ $$

Question Number 128495    Answers: 0   Comments: 0

find ∫_0 ^∞ ((sinx)/([x]))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{sinx}}{\left[\mathrm{x}\right]}\mathrm{dx} \\ $$

Question Number 128471    Answers: 2   Comments: 0

... calculus ... Φ=^? ∫_0 ^( 1) (ln(x))^2 ln((√(−ln(x))) dx

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{calculus}\:... \\ $$$$\:\:\:\:\:\:\:\Phi\overset{?} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({ln}\left({x}\right)\right)^{\mathrm{2}} {ln}\left(\sqrt{−{ln}\left({x}\right)}\:{dx}\right. \\ $$

Question Number 128417    Answers: 1   Comments: 0

η = ∫_0 ^( 1) x^3 (1−x^3 )^(n−1) dx

$$\:\:\:\:\:\:\:\:\:\eta\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\mathrm{3}} \:\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{n}−\mathrm{1}} \:\mathrm{dx}\: \\ $$

Question Number 128408    Answers: 1   Comments: 0

ρ = ∫ ((sin (4x))/(sin^4 (x)+cos^4 (x))) dx

$$\rho\:=\:\int\:\frac{\mathrm{sin}\:\left(\mathrm{4}{x}\right)}{\mathrm{sin}\:^{\mathrm{4}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{4}} \left({x}\right)}\:{dx}\: \\ $$

Question Number 128385    Answers: 1   Comments: 0

∫_1 ^( π) determinant ((x^3 ,(lnx),(sinx)),((3x^2 ),(1/x),(cosx)),(6,(2x^(−3) ),(−cosx)))dx =?

$$\int_{\mathrm{1}} ^{\:\pi} \begin{vmatrix}{\mathrm{x}^{\mathrm{3}} }&{\mathrm{lnx}}&{\mathrm{sinx}}\\{\mathrm{3x}^{\mathrm{2}} }&{\frac{\mathrm{1}}{\mathrm{x}}}&{\mathrm{cosx}}\\{\mathrm{6}}&{\mathrm{2x}^{−\mathrm{3}} }&{−\mathrm{cosx}}\end{vmatrix}\mathrm{dx}\:=?\: \\ $$

Question Number 128373    Answers: 1   Comments: 0

∫_0 ^1 x^(3/2) (1−x)^(1/2) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{dx} \\ $$

Question Number 128334    Answers: 1   Comments: 0

Ω = ∫ (x^2 /( (√((a+bx^2 )^5 )))) dx ; where : a; b >0

$$\Omega\:=\:\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{a}+\mathrm{bx}^{\mathrm{2}} \right)^{\mathrm{5}} }}\:\mathrm{dx}\:;\:\mathrm{where}\::\:\mathrm{a};\:\mathrm{b}\:>\mathrm{0}\: \\ $$

Question Number 128346    Answers: 2   Comments: 0

Question Number 128316    Answers: 1   Comments: 0

nice calculus Ω= ∫_0 ^( ∞) ((sin^3 (x))/x^2 )dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:{nice}\:\:{calculus} \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\mathrm{3}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx}=? \\ $$$$ \\ $$

Question Number 128285    Answers: 1   Comments: 0

cos ((π/7))−cos (((2π)/7))+cos (((3π)/7)) =?

$$\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{7}}\right)−\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=? \\ $$

Question Number 128276    Answers: 1   Comments: 0

∫_e^2 ^( ∞) (dx/(x^3 ln x)) ?

$$\:\int_{{e}^{\mathrm{2}} } ^{\:\infty} \:\frac{{dx}}{{x}^{\mathrm{3}} \:\mathrm{ln}\:{x}}\:? \\ $$

  Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121      Pg 122   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com