Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 114
Question Number 130320 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{x}−\mathrm{1}}{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} }\:\mathrm{dx}\: \\ $$
Question Number 130306 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{x}\:\mathrm{cos}\:\left(\mathrm{x}\right)\:\mathrm{ln}\:\left(\mathrm{x}\right)\mathrm{e}^{−\mathrm{x}} \:\mathrm{dx}\:?\: \\ $$
Question Number 130296 Answers: 1 Comments: 1
$$\int\left({x}^{\mathrm{2}} /\mathrm{2}+{x}\right){dx} \\ $$
Question Number 130285 Answers: 1 Comments: 0
Question Number 130254 Answers: 1 Comments: 0
$${prove} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({x}\right){ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{7}\pi}{\mathrm{4}}\zeta\left(\mathrm{3}\right)+\frac{\pi^{\mathrm{3}} {ln}\left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$${where}\:\zeta\left(\mathrm{3}\right)\:{is}\:{a}\:{pery}^{\:,} {s}\:{constant} \\ $$
Question Number 130214 Answers: 1 Comments: 0
$$\int\frac{\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{du} \\ $$
Question Number 130208 Answers: 1 Comments: 0
$$\:\mathrm{The}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{curve}\:\mathrm{2ay}^{\mathrm{2}} =\mathrm{x}\left(\mathrm{x}−\mathrm{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{revolves}\:\mathrm{about}\:\mathrm{straight}\:\mathrm{line}\: \\ $$$$\mathrm{y}=\mathrm{a}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid} \\ $$$$\mathrm{generated}. \\ $$
Question Number 130203 Answers: 2 Comments: 0
Question Number 130167 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{ln}\left(\mathrm{u}\right)\mathrm{e}^{−\mathrm{u}} }{\left(\mathrm{1}+\mathrm{e}^{−\mathrm{u}} \right)^{\mathrm{2}} }\mathrm{du} \\ $$$$ \\ $$$$ \\ $$
Question Number 130158 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{segment}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}^{\mathrm{2}} \:=\:\:\:\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} \:\mathrm{if}\:\mathrm{the}\:\mathrm{line}\:\mathrm{x}=\:\:\:\mathrm{2}\:\mathrm{is}\:\mathrm{the}\:\mathrm{chord}\: \\ $$$$\mathrm{determining}\:\mathrm{the}\:\mathrm{segment}\: \\ $$
Question Number 130149 Answers: 3 Comments: 0
$$\:\Re\:=\:\int\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+...}}}}\:{dx} \\ $$$$\:\Im\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\ell\mathrm{n}\:{x}}{{x}+\mathrm{1}}\:{dx}\: \\ $$
Question Number 130137 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\mathrm{for}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{2}\right) \\ $$
Question Number 130135 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{6}} }\mathrm{dx} \\ $$
Question Number 130133 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{solve}\:\mathrm{for}\:{x} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{x}} \underset{{m}=\mathrm{0}} {\overset{\lceil{x}\rceil} {\sum}}{x}^{\mathrm{ln}\:{m}+\mathrm{1}} \:{dx}\:=\:{x}^{\mathrm{2}} \:,\: \\ $$$$\: \\ $$$$\:\mathrm{where}\:\lceil{x}\rceil\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{integer}\:\mathrm{greater}\:\mathrm{than}\:{x}\:\: \\ $$$$\: \\ $$$$\: \\ $$
Question Number 130132 Answers: 1 Comments: 0
$${solve}\:\int\int_{{G}} \left(\mathrm{7}{x}−{y}\right){dxdy},\:{where}\:{G}\:{is}\:{given}\:{by}\:{y}=\mathrm{0} \\ $$$${x}+\mathrm{2}{y}=\mathrm{3},\:{x}={y}^{\mathrm{2}} \\ $$$$ \\ $$$${i}\:{want}\:{to}\:{know}\:{if}\:{the}\:{integral}\:{below}\:{is}\:{a}\:{correct} \\ $$$${representation}\:{of}\:{the}\:{integral}\:{above}. \\ $$$$\:\left(\underset{\mathrm{0}} {\overset{\frac{\mathrm{3}}{\mathrm{2}}} {\int}}\underset{\mathrm{0}} {\overset{\frac{\mathrm{9}}{\mathrm{4}}} {\int}}\left(\mathrm{7}{x}−{y}\right){dxdy}\right). \\ $$
Question Number 130053 Answers: 4 Comments: 0
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$
Question Number 130029 Answers: 1 Comments: 2
$$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\int_{\mathrm{3}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 130011 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\Phi=\underset{\:\:\:\:\:\mathbb{R}} {\int}{e}^{\left(−{e}^{{x}} +\mathrm{2}{x}\right)} {x}^{\mathrm{2}} {dx}=\left(\mathrm{1}−\gamma\right)^{\mathrm{2}} +\frac{\pi^{\mathrm{2}} −\mathrm{6}}{\mathrm{6}} \\ $$$$ \\ $$
Question Number 129996 Answers: 0 Comments: 0
$$\int\frac{\sqrt[{\mathrm{5}}]{{x}^{\mathrm{2}} }}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}^{\mathrm{5}} }}}{dx} \\ $$
Question Number 129991 Answers: 0 Comments: 0
$$\:\int\:\left(\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \right)\left(\frac{\boldsymbol{\mathrm{x}}^{\mathrm{6}} +\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{4}} }{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} }\right)\boldsymbol{\mathrm{dx}}\:=\:... \\ $$
Question Number 129989 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{xy}^{\mathrm{2}} \:=\:\mathrm{4a}^{\mathrm{2}} \left(\mathrm{2a}−\mathrm{x}\right) \\ $$$$\mathrm{and}\:\mathrm{its}\:\mathrm{asymptotes}. \\ $$
Question Number 129978 Answers: 1 Comments: 0
$$\mathrm{is}\:\mathrm{this}\:\mathrm{true}\:\mathrm{for}\:{n}\in\mathbb{N}^{\bigstar} ?\:\mathrm{someone}\:\mathrm{please}\:\mathrm{prove} \\ $$$$\mathrm{or}\:\mathrm{falsify}! \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−{x}^{\mathrm{2}{n}} } {dx}=\Gamma\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}} \\ $$
Question Number 129975 Answers: 2 Comments: 0
Question Number 129972 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....{nice}\:\:{calculus}... \\ $$$$\:\:{evaluation}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {t}^{\mathrm{2}} {e}^{−{t}} {ln}\left({t}\right){dt}=?? \\ $$$$\:\:{solution}: \\ $$$$\:\:\:{f}\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty} {t}^{\mathrm{2}+{s}} {e}^{−{t}} {dt} \\ $$$$\:\:\:\Omega={f}\:'\left(\mathrm{0}\right)=... \\ $$$$\:\:\:{f}\left({s}\right)=\Gamma\left(\mathrm{3}+{s}\right) \\ $$$$\:\:\:\:{f}\:'\left({s}\right)=\Gamma'\left(\mathrm{3}+{s}\right)=\psi\left(\mathrm{3}+{s}\right)\Gamma\left(\mathrm{3}+{s}\right) \\ $$$${f}\:'\left(\mathrm{0}\right)=\psi\left(\mathrm{3}\right)\Gamma\left(\mathrm{3}\right)=\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{2}}\:−\gamma\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}−\mathrm{2}\gamma \\ $$$$\:\:\:\therefore\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {t}^{\mathrm{2}} {e}^{−{t}} {ln}\left({t}\right)=\mathrm{3}−\mathrm{2}\gamma\:... \\ $$$$\:\:\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$
Question Number 129946 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{tan}\:\varphi+\mathrm{3}}{\mathrm{sin}\:\varphi}\:\mathrm{d}\varphi\:? \\ $$
Question Number 129926 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}... \\ $$$$\:\:{evaluate}: \\ $$$$\:\:\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{{m}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left({k}+{m}+{n}\right)!}\right)=? \\ $$$$ \\ $$
Pg 109 Pg 110 Pg 111 Pg 112 Pg 113 Pg 114 Pg 115 Pg 116 Pg 117 Pg 118
Terms of Service
Privacy Policy
Contact: info@tinkutara.com