Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 107

Question Number 131602    Answers: 2   Comments: 0

Question Number 131581    Answers: 0   Comments: 1

... nice calculus... evaluate :: Ω=∫_0 ^( ∞) ((sin(x))/x)ln(((a+cos^2 (x))/(b+cos^2 (x))))dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:\:\:\:{calculus}... \\ $$$$\:\:\:{evaluate}\::: \\ $$$$\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}}{ln}\left(\frac{{a}+{cos}^{\mathrm{2}} \left({x}\right)}{{b}+{cos}^{\mathrm{2}} \left({x}\right)}\right){dx}=? \\ $$$$ \\ $$

Question Number 131558    Answers: 1   Comments: 0

∫_0 ^1 (dx/( (√(1−x^4 )))) =?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\:=? \\ $$

Question Number 131552    Answers: 1   Comments: 0

∫ ((x dx)/((cot x+tan x)^2 )) ?

$$\int\:\frac{\mathrm{x}\:\mathrm{dx}}{\left(\mathrm{cot}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}\right)^{\mathrm{2}} }\:? \\ $$

Question Number 131549    Answers: 2   Comments: 0

slowly integral ∫ ((sec^4 x)/( (√(tan^3 x)))) dx =?

$$\mathrm{slowly}\:\mathrm{integral}\: \\ $$$$\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} \mathrm{x}}{\:\sqrt{\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}}}\:\mathrm{dx}\:=? \\ $$

Question Number 131547    Answers: 3   Comments: 0

J = ∫_0 ^( ∞) ((x^8 −1)/(x^(10) +1)) dx ?

$$\:\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{x}^{\mathrm{8}} −\mathrm{1}}{\mathrm{x}^{\mathrm{10}} +\mathrm{1}}\:\mathrm{dx}\:? \\ $$

Question Number 131546    Answers: 1   Comments: 0

prove that ∫_0 ^∞ e^(−x) ln(x)dx =−γ

$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{dx}\:=−\gamma \\ $$

Question Number 131529    Answers: 1   Comments: 0

...advanced ∗∗∗∗∗∗∗∗∗∗ calculus... prove that ::: :: 𝛗=∫_0 ^( ∞) ((sin(x^4 )ln(x))/x)dx=−((𝛑𝛄)/(32)) note : ∫_0 ^( ∞) ((sin(x)ln(x))/x)dx=^(why???) ((−𝛑𝛄)/2) 𝛗=^(⟨x^4 =t⟩) (1/4)∫_0 ^( ∞) ((sin(t)ln(t^(1/4) ))/t^(1/4) ) ∗(1/t^(3/4) )dt =(1/(16))∫_0 ^( ∞) ((sin(t)ln(t))/t)dt =^(note) ((−𝛑𝛄)/(32)) ( 𝛗=−((𝛑𝛄)/(32)) ) notice:: you will prove that::∫_0 ^( ∞) ((sin(x)ln(x))/x)dx=((−𝛑𝛄)/2) Hint:: ∫_0 ^( ∞) ((sin(x))/(x^( 𝛍) ))dx=^(???) (𝛑/(2𝚪(𝛍)sin(((𝛍𝛑)/2)))) ... m.n.july.1970 ...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:\:\ast\ast\ast\ast\ast\ast\ast\ast\ast\ast\:\:\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}\::::\::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}^{\mathrm{4}} \right){ln}\left({x}\right)}{{x}}{dx}=−\frac{\boldsymbol{\pi\gamma}}{\mathrm{32}} \\ $$$$\:\:\:\:{note}\::\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx}\overset{{why}???} {=}\:\frac{−\boldsymbol{\pi\gamma}}{\mathrm{2}} \\ $$$$\:\:\:\:\boldsymbol{\phi}\overset{\langle{x}^{\mathrm{4}} ={t}\rangle} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right){ln}\left({t}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)}{{t}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:\ast\frac{\mathrm{1}}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}} }{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\:\:\infty} \frac{{sin}\left({t}\right){ln}\left({t}\right)}{{t}}{dt}\:\overset{{note}} {=}\frac{−\boldsymbol{\pi\gamma}}{\mathrm{32}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\boldsymbol{\phi}=−\frac{\boldsymbol{\pi\gamma}}{\mathrm{32}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{notice}::\:{you}\:{will}\:{prove}\:{that}::\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx}=\frac{−\boldsymbol{\pi\gamma}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{Hint}::\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}^{\:\boldsymbol{\mu}} \:}{dx}\overset{???} {=}\frac{\boldsymbol{\pi}}{\mathrm{2}\boldsymbol{\Gamma}\left(\boldsymbol{\mu}\right){sin}\left(\frac{\boldsymbol{\mu\pi}}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{m}.{n}.{july}.\mathrm{1970}\:... \\ $$

Question Number 131527    Answers: 3   Comments: 0

Question Number 131520    Answers: 0   Comments: 2

Nice integral ∫_0 ^( ∞) (x^2 /((x+100)^3 )) dx =?

$$\:\mathrm{Nice}\:\mathrm{integral}\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{100}\right)^{\mathrm{3}} }\:\mathrm{dx}\:=? \\ $$

Question Number 131517    Answers: 1   Comments: 0

Given ∫_0 ^3 f(x)dx=∫_0 ^3 (2x−1)dx+∫_0 ^3 (∫_0 ^3 f(x)dx)dx find ∫_(−1) ^1 f(x)dx .

$$\mathrm{Given}\:\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{3}} \left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx}+\int_{\mathrm{0}} ^{\mathrm{3}} \left(\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right)\mathrm{dx} \\ $$$$\mathrm{find}\:\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:. \\ $$

Question Number 131505    Answers: 4   Comments: 1

If ∫_a ^b f(x)dx = ∫_a ^b g(x)dx is f(x)=g(x) ? true or false?

$$\mathrm{If}\:\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:=\:\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{g}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{is}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right)\:?\: \\ $$$$\mathrm{true}\:\mathrm{or}\:\mathrm{false}? \\ $$

Question Number 131496    Answers: 3   Comments: 0

Given f(x)=f(x+(π/6)) ∀x∈R if ∫_0 ^( (π/6)) f(x)dx= T find the value of ∫_π ^( ((4π)/3)) f(x+π)dx. nice integral

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}+\frac{\pi}{\mathrm{6}}\right)\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{if}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{6}}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\:\mathrm{T}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\pi} ^{\:\frac{\mathrm{4}\pi}{\mathrm{3}}} \mathrm{f}\left(\mathrm{x}+\pi\right)\mathrm{dx}. \\ $$$$\mathrm{nice}\:\mathrm{integral} \\ $$

Question Number 131405    Answers: 5   Comments: 2

…… super cooles Integral ⋰⋰ ∫_0 ^( ∞) (dx/((1+x^2 )^2 )) =?

$$ \\ $$$$\:\:\ldots\ldots\:\:\mathrm{super}\:\mathrm{cooles}\:\mathrm{Integral}\:\iddots\iddots \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=? \\ $$

Question Number 131401    Answers: 1   Comments: 0

...nice calculus... prove that::: ∫_0 ^( 1) (Arcsin(x)).(Arccos(x))dx=^(??) 2−(π/2)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathscr{A}{rcsin}\left({x}\right)\right).\left(\mathscr{A}{rccos}\left({x}\right)\right){dx}\overset{??} {=}\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$

Question Number 131364    Answers: 1   Comments: 0

How can I calculate the volume of a region bounded by y=x^2 +3 ;x=1 and x=2 rotating about the y=7 using the shell method.

$$ \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{I}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{volume}\: \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} +\mathrm{3}\:;\mathrm{x}=\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{x}=\mathrm{2}\:\mathrm{rotating}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}=\mathrm{7}\:\mathrm{using} \\ $$$$\mathrm{the}\:\mathrm{shell}\:\mathrm{method}. \\ $$

Question Number 131286    Answers: 2   Comments: 0

... calculus .... find :: i:: Σ_(n=2) ^∞ (((−1)^n )/(n^2 −1))=? ii:: Σ_(n=2) ^∞ ((((−1)^n )/(n^4 −1)))=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{calculus}\:.... \\ $$$$\:\:\:\:\:{find}\:::\:\:{i}::\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} −\mathrm{1}}\right)=? \\ $$$$\:\:\:\: \\ $$$$ \\ $$

Question Number 131247    Answers: 8   Comments: 0

(1) ψ = ∫ (dx/(1−sin x cos x))=? (2) ∫_0 ^( ∞) (x/(x^3 +1)) dx =? (3) ∫_0 ^∞ (1/(x^(3/2) +1)) dx =?

$$\left(\mathrm{1}\right)\:\psi\:=\:\int\:\frac{{dx}}{\mathrm{1}−\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}=? \\ $$$$\left(\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}}{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}\:=? \\ $$$$\left(\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{3}/\mathrm{2}} +\mathrm{1}}\:{dx}\:=?\: \\ $$

Question Number 131245    Answers: 2   Comments: 0

Find ∫_(−b) ^b ∫_(−a) ^a ((dxdy)/( (x^2 +y^2 +h^2 )^(3/2) ))

$$\:\mathrm{Find}\: \\ $$$$\:\:\:\:\int_{−\mathrm{b}} ^{\mathrm{b}} \int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{d}{xdy}}{\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$

Question Number 131227    Answers: 1   Comments: 0

... real analysis ... prove:: 𝛀= ∫_0 ^( 1) ln(ln((1/x)))ln^2 (x)dx=3−2γ

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{real}\:\:{analysis}\:... \\ $$$$\:\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\boldsymbol{\Omega}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({ln}\left(\frac{\mathrm{1}}{{x}}\right)\right){ln}^{\mathrm{2}} \left({x}\right){dx}=\mathrm{3}−\mathrm{2}\gamma \\ $$$$ \\ $$

Question Number 131211    Answers: 1   Comments: 0

...calculus... prove that:: 𝚽=∫_0 ^( (𝛑/4)) (((√(tan(x)+tan^2 (x)))/( (√(tan(x)−tan^2 (x))))) sin(x))dx =(1/2)+((√𝛑)/8) (((𝚪((1/4)))/(𝚪((3/4))))−((𝚪((3/4)))/(𝚪((5/4)))))

$$\:\:\:\:\:\:\:\:\:\:\:\:...{calculus}... \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \left(\frac{\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}{\:\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}\: \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{8}}\:\left(\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}−\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}\right) \\ $$

Question Number 131189    Answers: 0   Comments: 0

∫((−sin(ln(k^x )))/( (√k)))dx=??

$$\int\frac{−{sin}\left({ln}\left({k}^{{x}} \right)\right)}{\:\sqrt{{k}}}{dx}=?? \\ $$

Question Number 131187    Answers: 0   Comments: 0

Question Number 131183    Answers: 1   Comments: 0

Question Number 131176    Answers: 1   Comments: 0

∫((cos(ln(a^x )))/( (√k)))dx=??

$$\int\frac{{cos}\left({ln}\left({a}^{{x}} \right)\right)}{\:\sqrt{{k}}}{dx}=?? \\ $$

Question Number 131167    Answers: 2   Comments: 0

  Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com