Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 107
Question Number 131602 Answers: 2 Comments: 0
Question Number 131581 Answers: 0 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:\:\:\:{calculus}... \\ $$$$\:\:\:{evaluate}\::: \\ $$$$\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}}{ln}\left(\frac{{a}+{cos}^{\mathrm{2}} \left({x}\right)}{{b}+{cos}^{\mathrm{2}} \left({x}\right)}\right){dx}=? \\ $$$$ \\ $$
Question Number 131558 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\:=? \\ $$
Question Number 131552 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{x}\:\mathrm{dx}}{\left(\mathrm{cot}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}\right)^{\mathrm{2}} }\:? \\ $$
Question Number 131549 Answers: 2 Comments: 0
$$\mathrm{slowly}\:\mathrm{integral}\: \\ $$$$\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} \mathrm{x}}{\:\sqrt{\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}}}\:\mathrm{dx}\:=? \\ $$
Question Number 131547 Answers: 3 Comments: 0
$$\:\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{x}^{\mathrm{8}} −\mathrm{1}}{\mathrm{x}^{\mathrm{10}} +\mathrm{1}}\:\mathrm{dx}\:? \\ $$
Question Number 131546 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{dx}\:=−\gamma \\ $$
Question Number 131529 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:\:\ast\ast\ast\ast\ast\ast\ast\ast\ast\ast\:\:\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}\::::\::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}^{\mathrm{4}} \right){ln}\left({x}\right)}{{x}}{dx}=−\frac{\boldsymbol{\pi\gamma}}{\mathrm{32}} \\ $$$$\:\:\:\:{note}\::\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx}\overset{{why}???} {=}\:\frac{−\boldsymbol{\pi\gamma}}{\mathrm{2}} \\ $$$$\:\:\:\:\boldsymbol{\phi}\overset{\langle{x}^{\mathrm{4}} ={t}\rangle} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right){ln}\left({t}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)}{{t}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:\ast\frac{\mathrm{1}}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}} }{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\:\:\infty} \frac{{sin}\left({t}\right){ln}\left({t}\right)}{{t}}{dt}\:\overset{{note}} {=}\frac{−\boldsymbol{\pi\gamma}}{\mathrm{32}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\boldsymbol{\phi}=−\frac{\boldsymbol{\pi\gamma}}{\mathrm{32}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{notice}::\:{you}\:{will}\:{prove}\:{that}::\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx}=\frac{−\boldsymbol{\pi\gamma}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{Hint}::\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}^{\:\boldsymbol{\mu}} \:}{dx}\overset{???} {=}\frac{\boldsymbol{\pi}}{\mathrm{2}\boldsymbol{\Gamma}\left(\boldsymbol{\mu}\right){sin}\left(\frac{\boldsymbol{\mu\pi}}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{m}.{n}.{july}.\mathrm{1970}\:... \\ $$
Question Number 131527 Answers: 3 Comments: 0
Question Number 131520 Answers: 0 Comments: 2
$$\:\mathrm{Nice}\:\mathrm{integral}\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{100}\right)^{\mathrm{3}} }\:\mathrm{dx}\:=? \\ $$
Question Number 131517 Answers: 1 Comments: 0
$$\mathrm{Given}\:\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{3}} \left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx}+\int_{\mathrm{0}} ^{\mathrm{3}} \left(\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right)\mathrm{dx} \\ $$$$\mathrm{find}\:\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:. \\ $$
Question Number 131505 Answers: 4 Comments: 1
$$\mathrm{If}\:\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:=\:\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{g}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{is}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right)\:?\: \\ $$$$\mathrm{true}\:\mathrm{or}\:\mathrm{false}? \\ $$
Question Number 131496 Answers: 3 Comments: 0
$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}+\frac{\pi}{\mathrm{6}}\right)\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{if}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{6}}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\:\mathrm{T}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\pi} ^{\:\frac{\mathrm{4}\pi}{\mathrm{3}}} \mathrm{f}\left(\mathrm{x}+\pi\right)\mathrm{dx}. \\ $$$$\mathrm{nice}\:\mathrm{integral} \\ $$
Question Number 131405 Answers: 5 Comments: 2
$$ \\ $$$$\:\:\ldots\ldots\:\:\mathrm{super}\:\mathrm{cooles}\:\mathrm{Integral}\:\iddots\iddots \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=? \\ $$
Question Number 131401 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathscr{A}{rcsin}\left({x}\right)\right).\left(\mathscr{A}{rccos}\left({x}\right)\right){dx}\overset{??} {=}\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$
Question Number 131364 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{I}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{volume}\: \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} +\mathrm{3}\:;\mathrm{x}=\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{x}=\mathrm{2}\:\mathrm{rotating}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}=\mathrm{7}\:\mathrm{using} \\ $$$$\mathrm{the}\:\mathrm{shell}\:\mathrm{method}. \\ $$
Question Number 131286 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{calculus}\:.... \\ $$$$\:\:\:\:\:{find}\:::\:\:{i}::\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} −\mathrm{1}}\right)=? \\ $$$$\:\:\:\: \\ $$$$ \\ $$
Question Number 131247 Answers: 8 Comments: 0
$$\left(\mathrm{1}\right)\:\psi\:=\:\int\:\frac{{dx}}{\mathrm{1}−\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}=? \\ $$$$\left(\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}}{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}\:=? \\ $$$$\left(\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{3}/\mathrm{2}} +\mathrm{1}}\:{dx}\:=?\: \\ $$
Question Number 131245 Answers: 2 Comments: 0
$$\:\mathrm{Find}\: \\ $$$$\:\:\:\:\int_{−\mathrm{b}} ^{\mathrm{b}} \int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{d}{xdy}}{\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$
Question Number 131227 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{real}\:\:{analysis}\:... \\ $$$$\:\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\boldsymbol{\Omega}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({ln}\left(\frac{\mathrm{1}}{{x}}\right)\right){ln}^{\mathrm{2}} \left({x}\right){dx}=\mathrm{3}−\mathrm{2}\gamma \\ $$$$ \\ $$
Question Number 131211 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:...{calculus}... \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \left(\frac{\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}{\:\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}\: \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{8}}\:\left(\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}−\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}\right) \\ $$
Question Number 131189 Answers: 0 Comments: 0
$$\int\frac{−{sin}\left({ln}\left({k}^{{x}} \right)\right)}{\:\sqrt{{k}}}{dx}=?? \\ $$
Question Number 131187 Answers: 0 Comments: 0
Question Number 131183 Answers: 1 Comments: 0
Question Number 131176 Answers: 1 Comments: 0
$$\int\frac{{cos}\left({ln}\left({a}^{{x}} \right)\right)}{\:\sqrt{{k}}}{dx}=?? \\ $$
Question Number 131167 Answers: 2 Comments: 0
Pg 102 Pg 103 Pg 104 Pg 105 Pg 106 Pg 107 Pg 108 Pg 109 Pg 110 Pg 111
Terms of Service
Privacy Policy
Contact: info@tinkutara.com