Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 104
Question Number 134289 Answers: 3 Comments: 0
$$\mathrm{I}=\int\:\frac{\mathrm{x}^{\mathrm{n}} }{\:\sqrt{\mathrm{ax}+\mathrm{b}}}\:\mathrm{dx} \\ $$$$\mathrm{H}=\int\:\frac{\mathrm{x}^{\mathrm{4}} }{\:\sqrt{\mathrm{2x}+\mathrm{1}}}\:\mathrm{dx} \\ $$
Question Number 134272 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{nice}\:\:\:\mathrm{calculus} \\ $$$$\:\:\:\:\mathrm{prove}\:\mathrm{that}:\::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{i}\:::\:\: =\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\pi{x}\right)}{{e}^{\mathrm{2}\pi\sqrt{{x}}\:} −\mathrm{1}}\:{dx}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}\:}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:{compute}:\:\:\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{10}}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}... \\ $$
Question Number 134239 Answers: 1 Comments: 2
$${can}\:{i}\:{ask}\:{for}\:{some}\:{help}? \\ $$$${how}\:{to}\:{prove}\:{this}? \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}<\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}<\frac{\pi}{\mathrm{6}} \\ $$
Question Number 134227 Answers: 0 Comments: 1
$$\mathrm{I}\:\:\mathrm{struck}\:\mathrm{upon}\:\mathrm{this} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} =\frac{−\mathrm{1}}{\mathrm{15}} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \mathrm{cos}^{\mathrm{4}} \:{x}\:\mathrm{sin}\:{x}\:{dx}=\frac{−\mathrm{1}}{\mathrm{5}}\left[\mathrm{cos}^{\mathrm{5}} \:{x}\right]_{\mathrm{0}} ^{\pi} =\mathrm{0}.\mathrm{4} \\ $$$$\mathrm{in}\:\mathrm{another}\:\mathrm{way} \\ $$$${I}=\int^{\:} \mathrm{cos}^{\mathrm{4}} \:{x}\:\mathrm{sin}\:{x}\:{dx} \\ $$$${I}^{\:} =\mathrm{cos}^{\mathrm{4}} \:\left({x}\right)\:\left(−\mathrm{cos}\:{x}\right)−\int\mathrm{4cos}^{\mathrm{3}} \:{x}\left(−\mathrm{sin}\:{x}\right)\left(−\mathrm{cos}\:{x}\right){dx} \\ $$$${I}^{\:} =\mathrm{cos}^{\mathrm{5}} \:{x}−\mathrm{4}\int\mathrm{cos}^{\mathrm{4}} \:{x}\:\mathrm{sin}\:{xdx} \\ $$$${I}^{\:} =\mathrm{cos}^{\mathrm{5}} \:{x}−\mathrm{4}{I} \\ $$$${I}=−\mathrm{cos}^{\mathrm{5}} \:{x}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{4}\right)^{{n}} +{C} \\ $$$$\left[{I}\right]_{\mathrm{0}} ^{\pi} =\left[\left(−\left(−\mathrm{1}\right)\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{4}\right)^{{n}} \right)−\left(−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{4}\right)^{{n}} \right)\right] \\ $$$$=\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{4}\right)^{{n}} =\mathrm{2}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} −\mathrm{4}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} \right) \\ $$$$=\mathrm{2}\left(−\mathrm{3}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} \right)=−\mathrm{6}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} \\ $$$$−\mathrm{6}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} =\mathrm{0}.\mathrm{4}\Rightarrow\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} =\frac{−\mathrm{0}.\mathrm{4}}{\mathrm{6}}=\frac{−\mathrm{1}}{\mathrm{15}} \\ $$$$\mathrm{did}\:\mathrm{I}\:\mathrm{do}\:\mathrm{something}\:\mathrm{wrong}? \\ $$
Question Number 134219 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\pi} \mathrm{cos}^{\mathrm{4}} \:{x}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$
Question Number 134185 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:.....{advanced}\:\:\:{calculus}.... \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:{i}:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({tan}\left({x}\right)−{x}\right)}{{cos}\left({x}\right)}{dx}=\frac{\pi}{{e}} \\ $$$$\:\:\:\:{ii}:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}{e}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{{n}^{\mathrm{2}} } =\frac{\pi}{{e}\sqrt{{e}}} \\ $$$$\:\: \\ $$
Question Number 134182 Answers: 1 Comments: 0
Question Number 134058 Answers: 1 Comments: 0
$$\mathcal{J}\:=\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{tan}\:{x}+\mathrm{csc}\:{x}+\mathrm{cot}\:{x}+\mathrm{sec}\:{x}} \\ $$
Question Number 134039 Answers: 0 Comments: 0
Question Number 134038 Answers: 1 Comments: 0
Question Number 134016 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:?{prove}\::\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {H}_{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right).. \\ $$
Question Number 133973 Answers: 1 Comments: 0
$$\:\mathrm{Given}\:\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}}}\\{\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}}\end{cases} \\ $$$$\mathrm{Find}\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\left(\mathrm{g}\circ\mathrm{f}\circ\mathrm{g}\right)\left(\mathrm{x}\right)\:\mathrm{dx}\:. \\ $$
Question Number 133972 Answers: 1 Comments: 0
$$\mathscr{H}\:=\:\int\:\frac{\left(\mathrm{2x}−\mathrm{1}\right)^{\mathrm{7}} }{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{9}} }\:\mathrm{dx}\: \\ $$
Question Number 133963 Answers: 1 Comments: 0
$$\mathcal{Y}\:=\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{6}}]{\mathrm{1}+{x}^{\mathrm{6}} }}? \\ $$
Question Number 133957 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{decompose}\:\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{2x}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\int_{\mathrm{1}} ^{\infty} \:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 133943 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......{advanced}\:\:\:\:\:{calculus}...... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({x}^{\mathrm{2}} \right)−{cos}\left({x}\right)}{{x}}{dx}=\frac{\gamma}{\mathrm{2}} \\ $$$$\:\:\:\gamma:\:{euler}−{mascheroni}\:{constant}... \\ $$
Question Number 133911 Answers: 1 Comments: 0
$$\mathcal{A}=\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{5x}+\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$
Question Number 133910 Answers: 0 Comments: 0
$$\:\:\:\:\mathcal{D}\acute {\mathrm{e}montrer}\:\mathrm{que}; \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{1}+\mathrm{n}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\frac{\mathrm{sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\mathrm{cosh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{sinh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\mathrm{cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{sinh}^{\mathrm{2}} \left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}\right] \\ $$
Question Number 133907 Answers: 0 Comments: 0
Question Number 133938 Answers: 1 Comments: 0
Question Number 133825 Answers: 1 Comments: 0
Question Number 133791 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:......{advanced}\:\:\:\:{integral}.... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}−{e}^{−\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }\:\right)\frac{{dx}}{{x}}\:=?? \\ $$$$\:\:\:\varphi:\:=\:{Golden}\:{ratio}... \\ $$$$ \\ $$
Question Number 133786 Answers: 1 Comments: 0
$$\mathcal{A}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{4}} +\mathrm{2}}}\:\right)\:{dx}\:=? \\ $$
Question Number 133951 Answers: 3 Comments: 0
$$\:\mathcal{V}\:=\:\int\:\mathrm{ln}\:\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right)\:\mathrm{dx}\: \\ $$
Question Number 133719 Answers: 1 Comments: 1
Question Number 133725 Answers: 0 Comments: 7
Pg 99 Pg 100 Pg 101 Pg 102 Pg 103 Pg 104 Pg 105 Pg 106 Pg 107 Pg 108
Terms of Service
Privacy Policy
Contact: info@tinkutara.com