Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 104

Question Number 133050    Answers: 2   Comments: 0

...nice ......calculus... 𝛗= ∫_(0 ) ^( 1) xli_3 (x)dx=???

$$\:\:\:\:\:\:\:\:\:\:\:...{nice}\:......{calculus}... \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {xli}_{\mathrm{3}} \left({x}\right){dx}=??? \\ $$$$ \\ $$

Question Number 133048    Answers: 0   Comments: 0

nice .....calculus... evaluate ::Σ_(n=1) ^∞ ((H_n /(n^2 +n)))=?

$$\:\:\:\:\:\:\:{nice}\:.....{calculus}... \\ $$$$\:\:\:{evaluate}\:::\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{H}_{{n}} }{{n}^{\mathrm{2}} +{n}}\right)=? \\ $$$$ \\ $$

Question Number 133038    Answers: 1   Comments: 1

∫_0 ^1 ((x^4 (1βˆ’x)^4 )/(1+x^2 )) dx =?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{\mathrm{4}} \left(\mathrm{1}βˆ’{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=? \\ $$

Question Number 133036    Answers: 2   Comments: 0

∫^( (Ο€/2)) _0 (dx/(1+tan^(2014) (x))) = ((Ο€e^q )/p) Find 2pβˆ’q.

$$\underset{\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2014}} \left({x}\right)}\:=\:\frac{\pi\mathrm{e}^{\mathrm{q}} }{\mathrm{p}} \\ $$$$\mathrm{Find}\:\mathrm{2p}βˆ’\mathrm{q}.\: \\ $$

Question Number 133027    Answers: 4   Comments: 0

∫_0 ^2 x^5 (8βˆ’x^3 )^(1/3) dx

$$\overset{\mathrm{2}} {\int}_{\mathrm{0}} {x}^{\mathrm{5}} \left(\mathrm{8}βˆ’{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx} \\ $$

Question Number 133016    Answers: 3   Comments: 0

∫_0 ^(Ο€/2) (tan(x))^(1/n) dx ...

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({tan}\left({x}\right)\right)^{\frac{\mathrm{1}}{{n}}} {dx}\:... \\ $$

Question Number 133004    Answers: 1   Comments: 0

If ∫ ((tan x)/(1+tan x+tan^2 x)) dx = xβˆ’(k/( (√A))) tan^(βˆ’1) (((k tan x+1)/( (√A))))+C where C is constant of integration. then the ordered pair (k,A) is equal to

$$\mathrm{If}\:\int\:\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{1}+\mathrm{tan}\:\mathrm{x}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=\:\mathrm{x}βˆ’\frac{{k}}{\:\sqrt{{A}}}\:\mathrm{tan}^{βˆ’\mathrm{1}} \left(\frac{{k}\:\mathrm{tan}\:{x}+\mathrm{1}}{\:\sqrt{{A}}}\right)+\mathrm{C} \\ $$$$\mathrm{where}\:\mathrm{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}. \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{ordered}\:\mathrm{pair}\:\left({k},\mathrm{A}\right)\:\mathrm{is}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\: \\ $$

Question Number 133001    Answers: 0   Comments: 1

Question Number 132987    Answers: 2   Comments: 0

....mathematical analysis... prove that:: 𝛗=∫_0 ^( ∞) ((sin^3 (x))/x^3 )dx=((3Ο€)/8) βˆ—βˆ—βˆ—βˆ—..........

$$\:\:\:\:\:\:\:\:\:\:\:\:\:....{mathematical}\:\:{analysis}... \\ $$$$\:{prove}\:\:{that}::\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\mathrm{3}} \left({x}\right)}{{x}^{\mathrm{3}} }{dx}=\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\ast\ast\ast\ast.......... \\ $$$$ \\ $$

Question Number 132927    Answers: 0   Comments: 0

Question Number 132925    Answers: 1   Comments: 0

(∫_0 ^(Ο€/2) (√(sin(x)))dx)^2 +(∫_0 ^(Ο€/2) (√(cos(x)))dx)^2 <8((√2)βˆ’1)

$$\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{sin}\left({x}\right)}{dx}\right)^{\mathrm{2}} +\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{cos}\left({x}\right)}{dx}\right)^{\mathrm{2}} <\mathrm{8}\left(\sqrt{\mathrm{2}}βˆ’\mathrm{1}\right) \\ $$

Question Number 132901    Answers: 2   Comments: 0

∫_(βˆ’Ο€/2) ^(3Ο€/2) (sin^(βˆ’1) (∣sin x∣)+cos^(βˆ’1) (∣cos x∣)) dx

$$\int_{βˆ’\pi/\mathrm{2}} ^{\mathrm{3}\pi/\mathrm{2}} \:\left(\mathrm{sin}^{βˆ’\mathrm{1}} \left(\mid\mathrm{sin}\:\mathrm{x}\mid\right)+\mathrm{cos}^{βˆ’\mathrm{1}} \left(\mid\mathrm{cos}\:\mathrm{x}\mid\right)\right)\:\mathrm{dx} \\ $$

Question Number 132877    Answers: 1   Comments: 0

.... nice calculus... prove that : 𝛗=∫_0 ^( ∞) ((sin(x).log^2 (x))/x) =(Ο€/(24))(12Ξ³^( 2) +Ο€^2 ) .....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:{that}\:: \\ $$$$\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right).{log}^{\mathrm{2}} \left({x}\right)}{{x}} \\ $$$$\:\:\:\:\:\:\:=\frac{\pi}{\mathrm{24}}\left(\mathrm{12}\gamma^{\:\mathrm{2}} +\pi^{\mathrm{2}} \right)\:..... \\ $$

Question Number 132876    Answers: 0   Comments: 1

Question Number 132852    Answers: 0   Comments: 0

∫(xβˆ’1)^(x+1) dx

$$\int\left({x}βˆ’\mathrm{1}\right)^{{x}+\mathrm{1}} \mathrm{d}{x} \\ $$

Question Number 132838    Answers: 1   Comments: 0

Question Number 132798    Answers: 2   Comments: 0

∫_0 ^(Ο€/2) ((√(sin (x)))+(√(cos (x))))dx

$$\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \left(\sqrt{\mathrm{sin}\:\left({x}\right)}+\sqrt{\mathrm{cos}\:\left({x}\right)}\right){dx} \\ $$

Question Number 132765    Answers: 2   Comments: 0

Question Number 132755    Answers: 3   Comments: 1

Question Number 132733    Answers: 1   Comments: 0

∫_0 ^∞ ((log x)/(1+x^2 +x^4 )) dx=...?

$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }\:{dx}=...? \\ $$

Question Number 132729    Answers: 3   Comments: 0

....advanced calculus... evaluate : 𝛗=∫_0 ^( ∞) xe^(βˆ’2x) ln(x)dx=???

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:....{advanced}\:\:\:{calculus}... \\ $$$$\:\:\:\:{evaluate}\:: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {xe}^{βˆ’\mathrm{2}{x}} {ln}\left({x}\right){dx}=??? \\ $$$$ \\ $$

Question Number 132708    Answers: 2   Comments: 0

∫_(βˆ’βˆž) ^∞ ((x^2 cos (px+q))/(x^2 +(p+q)^2 ))dx

$$\int_{βˆ’\infty} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\:\left({px}+{q}\right)}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 132693    Answers: 2   Comments: 0

I=∫ (dx/(x(x^2 +1)^3 ))

$$\mathrm{I}=\int\:\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\: \\ $$

Question Number 132610    Answers: 2   Comments: 0

Ω=∫ ((sin^2 (x))/(1+sin^2 (x))) dx

$$\Omega=\int\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)}\:\mathrm{dx}\: \\ $$

Question Number 132600    Answers: 0   Comments: 0

Question Number 132598    Answers: 0   Comments: 0

Find the voloume bounded by z=(√(x^2 +y^2 )) and the plane y+z=3

$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{voloume}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{z}=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{y}+\mathrm{z}=\mathrm{3} \\ $$

  Pg 99      Pg 100      Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com