Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 100
Question Number 136922 Answers: 1 Comments: 0
$$\int\:{ln}\mid{tan}^{−\mathrm{1}} {x}\mid\:{dx}\:=\:? \\ $$
Question Number 136921 Answers: 1 Comments: 0
$$\:\:\:\:\:{evaluation}\:{of}\:::\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{xln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:{solution}: \\ $$$$\:\:\:\:\boldsymbol{\phi}\overset{{I}.{B}.{P}\:} {=}\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){ln}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx}=\boldsymbol{\Phi}\right\} \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\:\boldsymbol{\Phi}\:........\checkmark \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:{h}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{ax}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx} \\ $$$$\:\:\:\:\:\:\:\:{h}'\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\partial}{\partial_{{a}} }\left(\frac{{ln}\left(\mathrm{1}+{ax}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:{h}'\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{ax}^{\mathrm{2}} \right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:{h}'\left({a}\right)=\frac{\mathrm{1}}{\mathrm{1}+{a}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}}{dx}+\frac{\mathrm{1}}{\mathrm{1}+{a}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}}{\mathrm{1}+{ax}^{\mathrm{2}} }{dx}−\frac{\mathrm{1}}{\mathrm{1}+{a}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{ax}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{1}+{a}}{ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{a}\left(\mathrm{1}+{a}\right)}{ln}\left(\mathrm{1}+{a}\right)−\frac{\sqrt{{a}}}{{a}\left(\mathrm{1}+{a}\right)}\left[\left({tan}^{−\mathrm{1}} \left({x}\sqrt{{a}}\:\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \right. \\ $$$$\:\:\:\:\:\:\:\:=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{1}+{a}}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{a}\left(\mathrm{1}+{a}\right)}\:{ln}\left(\mathrm{1}+{a}\right)−\frac{\sqrt{{a}}}{{a}\left(\mathrm{1}+{a}\right)}{tan}^{−\mathrm{1}} \left(\sqrt{{a}}\:\right) \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {h}'\left({a}\right){da}={ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{a}\right)}{{a}}{da}−\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\left(\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\right) \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{24}}−\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\therefore\:\:{h}\left(\mathrm{1}\right)=\boldsymbol{\Phi}=\frac{\mathrm{3}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{48}}\:\:..\checkmark \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\mathrm{3}}{\mathrm{8}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{96}} \\ $$$$\:\:\:\:\boldsymbol{\phi}=\frac{\mathrm{1}}{\mathrm{8}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{96}} \\ $$$$\: \\ $$
Question Number 136906 Answers: 2 Comments: 0
$$\underset{\mathrm{9}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{\left({x}−\mathrm{8}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$
Question Number 136905 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{56}}{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{5}}{dx} \\ $$
Question Number 136929 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{e}^{\mathrm{ln}\:\left(\mathrm{sin}^{−\mathrm{1}} \mathrm{x}\right)} }{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=\:?\: \\ $$
Question Number 136883 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{log}\:_{\mathrm{5}} \left(\mathrm{7}^{{a}} −\mathrm{2}\right)=\:\mathrm{log}\:_{\mathrm{7}} \left(\mathrm{5}^{{a}} +\mathrm{2}\right) \\ $$$$.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\int_{{a}} ^{\mathrm{e}} \:\frac{\mathrm{1}+\mathrm{ln}\:\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{x}} +\mathrm{x}^{−\mathrm{x}} }\:\mathrm{dx}\:. \\ $$
Question Number 136868 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:......\:{nice}\:\:\:\:\:{calculus}.... \\ $$$$\:\:{prove}\:\:{that}\::: \\ $$$$\:{i}:\:\:\int_{−\infty} ^{\:\infty} \frac{{dx}}{\left(\mathrm{1}+{x}+{e}^{{x}} \right)^{\mathrm{2}} +\pi^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:\:\:\: \\ $$
Question Number 136859 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{cosx}\right)−\mathrm{sin}\left(\mathrm{sinx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}}\mathrm{dx} \\ $$
Question Number 136858 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{sinx}\right)−\mathrm{sin}\left(\mathrm{cosx}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 136844 Answers: 0 Comments: 0
Question Number 136840 Answers: 3 Comments: 0
$$\:\int\sqrt{\frac{{x}}{{x}−\mathrm{1}}}\:{dx} \\ $$
Question Number 136841 Answers: 3 Comments: 0
$$\int\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}\:{dx}\:=\:? \\ $$
Question Number 136835 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:.....{nice}\:\:\:\:\:{calculus}... \\ $$$$\:\:\:{for}\:\:\:\:{f}\left({x}\right)={f}\left({x}+\pi\right)\:: \\ $$$$\:\:\:\:\:\int_{−\infty} ^{\:\infty} {f}\left({x}\right).\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx}\overset{{why}???} {=}\int_{\mathrm{0}} ^{\:\pi} {f}\left({x}\right){dx} \\ $$
Question Number 136813 Answers: 1 Comments: 0
$$\:\:\:\:\: \\ $$$$\:\:\:......{advanced}\:\:\:\:{calculus}\left({I}\right).... \\ $$$$\:\:\:\:{if}\::\: \\ $$$$\:\:\Omega=\int_{\frac{\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{x}.{cos}\left(\mathrm{2}{x}\right).{cos}\left({x}\right)}{{sin}^{\mathrm{7}} \left({x}\right)}\:{dx}=\frac{{a}\pi}{\mathrm{90}} \\ $$$$\:\:\:{then}\:\:::\:\:{a}=??? \\ $$$$\:\: \\ $$$$\:\:\:\: \\ $$
Question Number 136806 Answers: 2 Comments: 0
Question Number 136803 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:.....\mathscr{A}{dvanced}\:\:\:\:\blacktriangleleft.............\blacktriangleright\:\:\:\mathscr{C}{alculus}..... \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{−\infty} ^{\:\infty} \frac{{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)}{{x}}{dx}=......??? \\ $$$$\:\:\:\:\:{solution}:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\overset{\frac{\mathrm{1}}{{x}}\:={t}} {=}\:\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}^{\mathrm{3}} \right)}{\frac{\mathrm{1}}{{t}}}.\frac{{dt}}{{t}^{\mathrm{2}} }\:............. \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}^{\mathrm{3}} \right)}{{t}}{dt}\:......... \\ $$$$\:\:\:\:\:\:\:\:\:\:\overset{{t}^{\mathrm{3}} ={y}} {=}\:\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({y}\right)}{{y}^{\frac{\mathrm{1}}{\mathrm{3}}} }.\frac{{dy}}{{y}^{\frac{\mathrm{2}}{\mathrm{3}}} }=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({y}\right)}{{y}} \\ $$$$\:\:\:\:\overset{\langle\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({r}\right)}{{r}}{dr}\:=\frac{\pi}{\mathrm{2}}\rangle} {=}\:\frac{\pi}{\mathrm{3}}\:........... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\boldsymbol{\phi}=\int_{−\infty} ^{\:\infty} \frac{{sin}\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{3}} }{{x}}{dx}=\frac{\pi}{\mathrm{3}}\:\:........\checkmark\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 136762 Answers: 0 Comments: 0
$$\:{let}\:\:{C}\left({a},{r}\right)=\left\{{z}\in\mathbb{C},\:\:\mid{z}−{a}\mid={r}\:\right\} \\ $$$${Let}\:{u},{v},{w}\:\in{C}\left({a},{r}\right)\:{such}\:{as}\:\:\:{u}+{v}=\mathrm{2}{w} \\ $$$${Prove}\:{that}\:\:\frac{{u}−{a}}{{v}−{a}}\:=\mathrm{1}\:,\:{u}={v}={w} \\ $$$$ \\ $$$${It}\:{shows}\:{that}\:{the}\:{middle}\:{of}\:{a}\:{segment}\: \\ $$$${joining}\:{two}\:{points}\:{in}\:{a}\:{circle}\:\:{is}\:{not}\:{in}\:{that}\:{circle} \\ $$
Question Number 136750 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:.....{advanced}\:\:\:\:{calculus}..... \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:...\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }{dx}=\sqrt{\pi}\:\:\:\: \\ $$
Question Number 136723 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....{calculus}\:\:\:\:\:\left({I}\right)..... \\ $$$$\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\:\:\:\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}}}\:\overset{???} {=}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:\:{n}}\end{pmatrix}\:{x}^{{n}} \\ $$$$ \\ $$
Question Number 136680 Answers: 2 Comments: 0
Question Number 136651 Answers: 2 Comments: 0
Question Number 136644 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left({ax}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:{f}\:'\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\left({ax}^{\mathrm{2}} +\mathrm{1}\right){x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dx}}{{x}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:=\frac{\sqrt{{a}}}{{a}}\left[{tan}^{−\mathrm{1}} \left({x}\sqrt{{a}}\:\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\sqrt{{a}}}{{a}}{tan}^{−\mathrm{1}} \left(\sqrt{{a}}\right) \\ $$$$\:\:{f}\left({a}\right)\overset{\sqrt{{a}}\:={u}} {=}\int\mathrm{2}{tan}^{−\mathrm{1}} \left({u}\right){du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left\{{u}.{tan}^{−\mathrm{1}} \:\left({u}\right)−\int\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }{du}\right\}+{C} \\ $$$$\:=\mathrm{2}\sqrt{{a}}\:{tan}^{−\mathrm{1}} \left(\sqrt{{a}}\:\right)−{ln}\left(\mathrm{1}+{a}\right)+{C} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}=\mathrm{0}+{C}\Rightarrow{C}=\mathrm{0} \\ $$$$\:\:\:{f}\left(\mathrm{1}\right)=\boldsymbol{\phi}=\mathrm{2}\left(\frac{\pi}{\mathrm{4}}\right)−{ln}\left(\mathrm{2}\right)=\frac{\pi}{\mathrm{2}}−{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Question Number 136626 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..........{nice}\:\:\:\:{calculus}......... \\ $$$$\:\:\:\:{suppose}\:{that}::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\varphi\left({p}\right)=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\left({p}+{x}\right)^{\mathrm{2}} }\:...\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{1}} \:\frac{\varphi\left({p}\right)}{\mathrm{1}+{p}}{dp}=?... \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 136572 Answers: 3 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:....{advanced}\:\:\:\:{calculus}.... \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}.\left({tan}\left({x}\right)\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}=?? \\ $$$$ \\ $$
Question Number 136497 Answers: 1 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......{nice}\:\:\:\:{calculus}..... \\ $$$$\:\:\:\:{prove}::\:\: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{ln}^{\mathrm{2}} \left({x}\right)}{dx}=\int_{\mathrm{0}\:} ^{\:\infty} \frac{{sin}\left({x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$ \\ $$
Question Number 136482 Answers: 0 Comments: 0
$${f}\left({x}\right)=\int_{−\Pi/\mathrm{4}} ^{\Pi\int/\mathrm{4}} {e}^{{xtant}} {dt} \\ $$
Pg 95 Pg 96 Pg 97 Pg 98 Pg 99 Pg 100 Pg 101 Pg 102 Pg 103 Pg 104
Terms of Service
Privacy Policy
Contact: info@tinkutara.com