Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 100

Question Number 135646    Answers: 1   Comments: 0

∫(x+(1/2))ln(1+(1/x))βˆ’x dx=...?

$$\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)βˆ’{x}\:{dx}=...? \\ $$

Question Number 135633    Answers: 1   Comments: 0

∫(1/(x^(1/3) +1))dx=...?

$$\int\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}}{dx}=...? \\ $$

Question Number 135662    Answers: 0   Comments: 0

Question Number 135627    Answers: 1   Comments: 0

... nice ................. calculus ... evaluation::::: 𝛗=^(???) ∫_0 ^( (Ο€/2)) sin(x)ln(sin(x))dx solution::::: 𝛗=^(⟨cos(x)=y⟩) (1/2)∫_0 ^( 1) ln(1βˆ’y^2 )dy =βˆ’(1/2)∫_0 ^( 1) Ξ£_(n=1 ) ^∞ (y^(2n) /n)=((βˆ’1)/2)Ξ£_(n=1) ^∞ ((1/n)∫_0 ^( 1) y^(2n) dy) =((βˆ’1)/2)Ξ£_(n=1) ^∞ (1/(n(2n+1)))=βˆ’Ξ£_(n=1) ^∞ (1/(2n)) βˆ’(1/(2n+1)) =βˆ’((1/2)βˆ’(1/3)+(1/4)βˆ’(1/5)+...) =βˆ’1+(1βˆ’(1/2)+(1/3)βˆ’...) =βˆ’1+Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) )/n)=_(harmonic seties) ^(alternating) βˆ’1+ln(2) ∴ 𝛗= βˆ’1+ln(2)=ln((2/e))

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:.................\:{calculus}\:... \\ $$$$\:\:\:\:\:\:\:{evaluation}:::::\:\:\:\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:{solution}::::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\overset{\langle{cos}\left({x}\right)={y}\rangle} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{1}βˆ’{y}^{\mathrm{2}} \right){dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:=βˆ’\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{n}=\mathrm{1}\:\:} {\overset{\infty} {\sum}}\frac{{y}^{\mathrm{2}{n}} }{{n}}=\frac{βˆ’\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {y}^{\mathrm{2}{n}} {dy}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{βˆ’\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)}=βˆ’\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}}\:βˆ’\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:=βˆ’\left(\frac{\mathrm{1}}{\mathrm{2}}βˆ’\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}βˆ’\frac{\mathrm{1}}{\mathrm{5}}+...\right) \\ $$$$\:\:\:\:\:\:\:\:\:=βˆ’\mathrm{1}+\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}βˆ’...\right) \\ $$$$\:\:\:\:\:\:\:\:\:=βˆ’\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(βˆ’\mathrm{1}\right)^{{n}βˆ’\mathrm{1}} }{{n}}\underset{{harmonic}\:{seties}} {\overset{{alternating}} {=}}βˆ’\mathrm{1}+{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:βˆ’\mathrm{1}+{ln}\left(\mathrm{2}\right)={ln}\left(\frac{\mathrm{2}}{{e}}\right) \\ $$$$\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\: \\ $$

Question Number 135614    Answers: 0   Comments: 0

Question Number 135610    Answers: 1   Comments: 0

.... Advanced ...... Calculus.... prove that : determinant (((i :: Ξ _(n=0) ^∞ (1βˆ’(x^2 /((2n+1)^2 ))) =cos(((Ο€x)/2)) βœ“ )),((ii :: Ξ _(n=0) ^∞ (1+(x^2 /((2n+1)^2 )))= cosh(((Ο€x)/2)) βœ“βœ“))) .............

$$\:\:\:\:\:\:\:\:\:\:....\:\mathscr{A}{dvanced}\:\:......\:\:\mathscr{C}{alculus}.... \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:{that}\:: \\ $$$$\:\:\:\begin{array}{|c|c|}{{i}\:::\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}βˆ’\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)\:={cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:\:\:\:\checkmark\:\:}\\{{ii}\:::\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)=\:{cosh}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:\checkmark\checkmark}\\\hline\end{array}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:............. \\ $$

Question Number 135559    Answers: 2   Comments: 1

Question Number 135525    Answers: 0   Comments: 2

.... nice ................ calculus... evaluation of :: 𝛗=∫_0 ^( ∞) xe^(βˆ’x) (√(1βˆ’e^(βˆ’x) )) dx solution:: 1βˆ’e^(βˆ’x) =t β‡’ {_( x=βˆ’ln(1βˆ’t)) ^( e^(βˆ’x) dx=dt) 𝛗=βˆ’βˆ«_0 ^( 1) ln(1βˆ’t).t^(1/2) dt =∫_0 ^( 1) Ξ£_(n=1) ^∞ (t^(n+(1/2)) /n)dt=Ξ£_(n=1) ^∞ (1/(n(n+(3/2)))) .... ∴ 𝛗= Ξ£_(n=1) ^∞ (1/(n(n+(3/2))))=Ξ£_(n=1) ^∞ (1/n)βˆ’(1/(n+(3/2))) .... =(2/3){Ξ³βˆ’Ξ³+Ξ£_(n=1) ^∞ ((1/n)βˆ’(1/(n+(3/2))))} .... we know that : ψ(s+1) := βˆ’Ξ³+Ξ£_(n=1) ^∞ ((1/n)βˆ’(1/(n+s))) ..... ∴ 𝛗=(2/3)(Ξ³+ψ((5/2))) .... on the oyher hand we have:: ψ(s+1)=(1/s)+ψ(s) ...... ψ((1/2))=βˆ’Ξ³βˆ’2ln(2) ...... ψ((5/2))=(2/3)+ψ((3/2))=(2/3)+(2+ψ((1/2))) =(2/3)+2+(βˆ’Ξ³βˆ’2ln(2)) .... ∴ ψ((3/2))=(8/3)βˆ’Ξ³βˆ’ln(4) .... :::::: 𝛗 =(2/3)(Ξ³+(8/3)βˆ’Ξ³βˆ’ln(4)) .... 𝛗=(2/3)((8/3)βˆ’ln(4))=(4/3)((4/3)βˆ’ln(2)) .... ...... 𝛗= (4/3)((4/3)βˆ’ln(2))......βœ“βœ“ .... ... prepare by mr rizzyβˆ’aka... solution with detais :m.n.july.1970

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:................\:{calculus}... \\ $$$$\:\:\:\:\:{evaluation}\:{of}\:::\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {xe}^{βˆ’{x}} \sqrt{\mathrm{1}βˆ’{e}^{βˆ’{x}} }\:{dx} \\ $$$$\:\:\:\:{solution}::\: \\ $$$$\:\:\:\:\mathrm{1}βˆ’{e}^{βˆ’{x}} ={t}\:\:\Rightarrow\:\left\{_{\:{x}=βˆ’{ln}\left(\mathrm{1}βˆ’{t}\right)} ^{\:{e}^{βˆ’{x}} {dx}={dt}} \right. \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=βˆ’\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{1}βˆ’{t}\right).{t}^{\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{t}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} }{{n}}{dt}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)}\:.... \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\:\boldsymbol{\phi}=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}βˆ’\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}}{\mathrm{2}}}\:.... \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}}\left\{\gammaβˆ’\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}βˆ’\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}}{\mathrm{2}}}\right)\right\}\:.... \\ $$$$\:\:\:\:\:{we}\:{know}\:{that}\::\: \\ $$$$\:\:\:\:\:\:\:\psi\left({s}+\mathrm{1}\right)\::=\:βˆ’\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}βˆ’\frac{\mathrm{1}}{{n}+{s}}\right)\:..... \\ $$$$\:\:\:\:\:\:\:\:\:\therefore\:\boldsymbol{\phi}=\frac{\mathrm{2}}{\mathrm{3}}\left(\gamma+\psi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:{on}\:{the}\:{oyher}\:{hand}\:{we}\:{have}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\psi\left({s}+\mathrm{1}\right)=\frac{\mathrm{1}}{{s}}+\psi\left({s}\right)\:...... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=βˆ’\gammaβˆ’\mathrm{2}{ln}\left(\mathrm{2}\right)\:...... \\ $$$$\:\:\:\:\:\:\:\:\:\psi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)=\frac{\mathrm{2}}{\mathrm{3}}+\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{2}}{\mathrm{3}}+\left(\mathrm{2}+\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2}+\left(βˆ’\gammaβˆ’\mathrm{2}{ln}\left(\mathrm{2}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{8}}{\mathrm{3}}βˆ’\gammaβˆ’{ln}\left(\mathrm{4}\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:::::::\:\:\:\:\:\boldsymbol{\phi}\:=\frac{\mathrm{2}}{\mathrm{3}}\left(\gamma+\frac{\mathrm{8}}{\mathrm{3}}βˆ’\gammaβˆ’{ln}\left(\mathrm{4}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{8}}{\mathrm{3}}βˆ’{ln}\left(\mathrm{4}\right)\right)=\frac{\mathrm{4}}{\mathrm{3}}\left(\frac{\mathrm{4}}{\mathrm{3}}βˆ’{ln}\left(\mathrm{2}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......\:\boldsymbol{\phi}=\:\frac{\mathrm{4}}{\mathrm{3}}\left(\frac{\mathrm{4}}{\mathrm{3}}βˆ’{ln}\left(\mathrm{2}\right)\right)......\checkmark\checkmark\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{prepare}\:{by}\:{mr}\:{rizzy}βˆ’{aka}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{solution}\:{with}\:{detais}\::{m}.{n}.{july}.\mathrm{1970} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\: \\ $$$$ \\ $$

Question Number 135513    Answers: 1   Comments: 0

Question Number 135495    Answers: 1   Comments: 0

hi, guyz ! letβ€²s try this : I=∫_0 ^( 1) ((sin^2 x)/(cos^3 x))dx.

$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{guyz}}\:! \\ $$$$\boldsymbol{\mathrm{let}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{try}}\:\boldsymbol{\mathrm{this}}\::\:\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{x}}}{\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{x}}}\boldsymbol{{dx}}. \\ $$

Question Number 135443    Answers: 0   Comments: 0

Question Number 135389    Answers: 0   Comments: 0

let U_n =∫_(βˆ’βˆž) ^∞ ((cos(nx))/((x^2 βˆ’x+1)^2 ))dx calculate lim_(nβ†’βˆž) e^n^2 U_n

$${let}\:{U}_{{n}} =\int_{βˆ’\infty} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{\left({x}^{\mathrm{2}} βˆ’{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow\infty} {e}^{{n}^{\mathrm{2}} } {U}_{{n}} \\ $$

Question Number 135382    Answers: 1   Comments: 0

find ∫_0 ^1 x^n ln(1βˆ’x^4 )dx with n integr natural

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {ln}\left(\mathrm{1}βˆ’{x}^{\mathrm{4}} \right){dx}\:{with}\:{n} \\ $$$${integr}\:{natural} \\ $$

Question Number 135372    Answers: 0   Comments: 0

calculate ∫_0 ^∞ (dx/(((√x)+(√(1+x^2 )))^3 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\sqrt{{x}}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{3}} } \\ $$

Question Number 135368    Answers: 1   Comments: 0

calculate ∫_0 ^(+∞) ((xarctan(2x))/((x^2 +1)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 135361    Answers: 1   Comments: 0

f(x)=3x^2 +6x,[βˆ’1,5] findβˆ’theβˆ’averageβˆ’value

$${f}\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x},\left[βˆ’\mathrm{1},\mathrm{5}\right] \\ $$$${find}βˆ’{the}βˆ’{average}βˆ’{value} \\ $$$$ \\ $$

Question Number 135259    Answers: 2   Comments: 0

∫(x^2 +3x)cos (x)dx

$$\int\left({x}^{\mathrm{2}} +\mathrm{3}{x}\right)\mathrm{cos}\:\left({x}\right){dx} \\ $$

Question Number 135257    Answers: 2   Comments: 1

∫t^7 ln(t)dt

$$\int{t}^{\mathrm{7}} {ln}\left({t}\right){dt} \\ $$

Question Number 135215    Answers: 0   Comments: 0

.....calculus preliminary.... Q: f(x)=2^x βˆ’2^(βˆ’x) β‡’ f^( βˆ’1) (x)=??? solution: y=2^x βˆ’2^(βˆ’x) ..... y=((2^(2x) βˆ’1)/2^x ) β‡’2^(2x) βˆ’y2^x βˆ’1=0 (βˆ—) ... :: 2^x =tβ‡’ t>0 ...βœ“ .... (βˆ—)β†’... t^2 βˆ’tyβˆ’1=0 .... Ξ”=y^2 +4>0...βœ“ ... t=((y+(√(y^2 +4)))/2) ...... :: 2^x =((y+(√(y^2 +4)))/2) β‡’_(both sides) ^(taking log) .... x:=log_2 (((y+(√(y^2 +4)))/2)) f^( βˆ’1) (x)=log_2 (((x+(√(x^2 +4)))/2)) βœ“βœ“ .........................

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{calculus}\:{preliminary}.... \\ $$$$\:\:\:{Q}:\:{f}\left({x}\right)=\mathrm{2}^{{x}} βˆ’\mathrm{2}^{βˆ’{x}} \:\Rightarrow\:{f}^{\:βˆ’\mathrm{1}} \left({x}\right)=??? \\ $$$$\:\:{solution}: \\ $$$$\:\:\:\:\:{y}=\mathrm{2}^{{x}} βˆ’\mathrm{2}^{βˆ’{x}} \:\:\:..... \\ $$$$\:\:\:\:\:\:{y}=\frac{\mathrm{2}^{\mathrm{2}{x}} βˆ’\mathrm{1}}{\mathrm{2}^{{x}} }\:\Rightarrow\mathrm{2}^{\mathrm{2}{x}} βˆ’{y}\mathrm{2}^{{x}} βˆ’\mathrm{1}=\mathrm{0}\:\:\left(\ast\right)\:... \\ $$$$\:\:\:::\:\:\mathrm{2}^{{x}} ={t}\Rightarrow\:{t}>\mathrm{0}\:...\checkmark\:.... \\ $$$$\:\:\:\:\:\:\:\left(\ast\right)\rightarrow...\:{t}^{\mathrm{2}} βˆ’{ty}βˆ’\mathrm{1}=\mathrm{0}\:.... \\ $$$$\:\:\:\:\:\:\:\:\Delta={y}^{\mathrm{2}} +\mathrm{4}>\mathrm{0}...\checkmark\:... \\ $$$$\:\:\:\:\:\:\:\:\:{t}=\frac{{y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\:\:...... \\ $$$$\:\:\:\:\:\:\:\:\:::\:\:\mathrm{2}^{{x}} =\frac{{y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\underset{{both}\:{sides}} {\overset{{taking}\:{log}} {\Rightarrow}}\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}:={log}_{\mathrm{2}} \left(\frac{{y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}^{\:βˆ’\mathrm{1}} \left({x}\right)={log}_{\mathrm{2}} \left(\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\right)\:\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......................... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\: \\ $$

Question Number 135174    Answers: 1   Comments: 0

Z = ∫_0 ^( Ο€/2) arctan (sin x) dx + ∫_0 ^( Ο€/4) arcsin (tan x) dx

$$\mathcal{Z}\:=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{arctan}\:\left(\mathrm{sin}\:\mathrm{x}\right)\:\mathrm{dx}\:+\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \mathrm{arcsin}\:\left(\mathrm{tan}\:\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 135231    Answers: 0   Comments: 0

∫(√((x^2 +x)^3 )) dx help me

$$ \\ $$$$\:\:\int\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$$$ \\ $$$$\:\mathrm{help}\:\mathrm{me} \\ $$$$ \\ $$

Question Number 135103    Answers: 0   Comments: 1

f(x)=1+Ξ£_(n=2) ^∞ (((βˆ’x)^n )/n)

$${f}\left({x}\right)=\mathrm{1}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(βˆ’{x}\right)^{{n}} }{{n}} \\ $$

Question Number 135062    Answers: 1   Comments: 0

Let f(0) = a ; f(3)=0 and f β€²(x)=e^x^4 what is the value ∫_0 ^( 3) x^2 f(x) dx ?

$$\mathrm{Let}\:\mathrm{f}\left(\mathrm{0}\right)\:=\:\mathrm{a}\:;\:\mathrm{f}\left(\mathrm{3}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\int_{\mathrm{0}} ^{\:\mathrm{3}} \mathrm{x}^{\mathrm{2}} \:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$

Question Number 135033    Answers: 0   Comments: 0

Question Number 134947    Answers: 1   Comments: 0

∫_0 ^( 2) ((√(1+x^3 )) + ((x^2 +2x))^(1/3) )dx ?

$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} \:}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}\:\right)\mathrm{dx}\:?\: \\ $$

Question Number 134962    Answers: 1   Comments: 0

  Pg 95      Pg 96      Pg 97      Pg 98      Pg 99      Pg 100      Pg 101      Pg 102      Pg 103      Pg 104   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com