a. Prove that for any real constant a โซ_0 ^โ e^(โ(a/x^2 )) dx=โ
b. If a and b are real constants, explain why we cannot split the
integral โซ_0 ^โ (e^(โ(a/x^2 )) โe^(โ(b/x^2 )) )dx as the difference โซ_0 ^โ e^(โ(a/x^2 )) dxโโซ_0 ^โ e^(โ(b/x^2 )) dx
c. If aโฅ0 and bโฅ0 constants, then prove that
โซ_0 ^โ (e^(โ(a/x^2 )) โe^(โ(b/x^2 )) )dx=(โ(ฯb))โ(โ(ฯa)).
d. If a>bโฅ0 constants, then prove that โซ_0 ^โ (e^(โ(a/x^2 )) โe^(โ(b/x^2 )) )dx=โ
|