| a. Prove that for any real constant a ∫_0 ^∞ e^(−(a/x^2 )) dx=∞
b. If a and b are real constants, explain why we cannot split the
integral ∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx as the difference ∫_0 ^∞ e^(−(a/x^2 )) dx−∫_0 ^∞ e^(−(b/x^2 )) dx
c. If a≥0 and b≥0 constants, then prove that
∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx=(√(πb))−(√(πa)).
d. If a>b≥0 constants, then prove that ∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx=∞
|