Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 100
Question Number 135646 Answers: 1 Comments: 0
$$\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)β{x}\:{dx}=...? \\ $$
Question Number 135633 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}}{dx}=...? \\ $$
Question Number 135662 Answers: 0 Comments: 0
Question Number 135627 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:.................\:{calculus}\:... \\ $$$$\:\:\:\:\:\:\:{evaluation}:::::\:\:\:\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:{solution}::::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\overset{\langle{cos}\left({x}\right)={y}\rangle} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{1}β{y}^{\mathrm{2}} \right){dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:=β\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{n}=\mathrm{1}\:\:} {\overset{\infty} {\sum}}\frac{{y}^{\mathrm{2}{n}} }{{n}}=\frac{β\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {y}^{\mathrm{2}{n}} {dy}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{β\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)}=β\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}}\:β\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:=β\left(\frac{\mathrm{1}}{\mathrm{2}}β\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}β\frac{\mathrm{1}}{\mathrm{5}}+...\right) \\ $$$$\:\:\:\:\:\:\:\:\:=β\mathrm{1}+\left(\mathrm{1}β\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}β...\right) \\ $$$$\:\:\:\:\:\:\:\:\:=β\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(β\mathrm{1}\right)^{{n}β\mathrm{1}} }{{n}}\underset{{harmonic}\:{seties}} {\overset{{alternating}} {=}}β\mathrm{1}+{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:β\mathrm{1}+{ln}\left(\mathrm{2}\right)={ln}\left(\frac{\mathrm{2}}{{e}}\right) \\ $$$$\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\: \\ $$
Question Number 135614 Answers: 0 Comments: 0
Question Number 135610 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:....\:\mathscr{A}{dvanced}\:\:......\:\:\mathscr{C}{alculus}.... \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:{that}\:: \\ $$$$\:\:\:\begin{array}{|c|c|}{{i}\:::\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}β\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)\:={cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:\:\:\:\checkmark\:\:}\\{{ii}\:::\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)=\:{cosh}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:\checkmark\checkmark}\\\hline\end{array}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:............. \\ $$
Question Number 135559 Answers: 2 Comments: 1
Question Number 135525 Answers: 0 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:................\:{calculus}... \\ $$$$\:\:\:\:\:{evaluation}\:{of}\:::\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {xe}^{β{x}} \sqrt{\mathrm{1}β{e}^{β{x}} }\:{dx} \\ $$$$\:\:\:\:{solution}::\: \\ $$$$\:\:\:\:\mathrm{1}β{e}^{β{x}} ={t}\:\:\Rightarrow\:\left\{_{\:{x}=β{ln}\left(\mathrm{1}β{t}\right)} ^{\:{e}^{β{x}} {dx}={dt}} \right. \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=β\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{1}β{t}\right).{t}^{\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{t}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} }{{n}}{dt}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)}\:.... \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\:\boldsymbol{\phi}=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}β\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}}{\mathrm{2}}}\:.... \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}}\left\{\gammaβ\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}β\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}}{\mathrm{2}}}\right)\right\}\:.... \\ $$$$\:\:\:\:\:{we}\:{know}\:{that}\::\: \\ $$$$\:\:\:\:\:\:\:\psi\left({s}+\mathrm{1}\right)\::=\:β\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}β\frac{\mathrm{1}}{{n}+{s}}\right)\:..... \\ $$$$\:\:\:\:\:\:\:\:\:\therefore\:\boldsymbol{\phi}=\frac{\mathrm{2}}{\mathrm{3}}\left(\gamma+\psi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:{on}\:{the}\:{oyher}\:{hand}\:{we}\:{have}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\psi\left({s}+\mathrm{1}\right)=\frac{\mathrm{1}}{{s}}+\psi\left({s}\right)\:...... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=β\gammaβ\mathrm{2}{ln}\left(\mathrm{2}\right)\:...... \\ $$$$\:\:\:\:\:\:\:\:\:\psi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)=\frac{\mathrm{2}}{\mathrm{3}}+\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{2}}{\mathrm{3}}+\left(\mathrm{2}+\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2}+\left(β\gammaβ\mathrm{2}{ln}\left(\mathrm{2}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{8}}{\mathrm{3}}β\gammaβ{ln}\left(\mathrm{4}\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:::::::\:\:\:\:\:\boldsymbol{\phi}\:=\frac{\mathrm{2}}{\mathrm{3}}\left(\gamma+\frac{\mathrm{8}}{\mathrm{3}}β\gammaβ{ln}\left(\mathrm{4}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{8}}{\mathrm{3}}β{ln}\left(\mathrm{4}\right)\right)=\frac{\mathrm{4}}{\mathrm{3}}\left(\frac{\mathrm{4}}{\mathrm{3}}β{ln}\left(\mathrm{2}\right)\right)\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......\:\boldsymbol{\phi}=\:\frac{\mathrm{4}}{\mathrm{3}}\left(\frac{\mathrm{4}}{\mathrm{3}}β{ln}\left(\mathrm{2}\right)\right)......\checkmark\checkmark\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{prepare}\:{by}\:{mr}\:{rizzy}β{aka}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{solution}\:{with}\:{detais}\::{m}.{n}.{july}.\mathrm{1970} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\: \\ $$$$ \\ $$
Question Number 135513 Answers: 1 Comments: 0
Question Number 135495 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{guyz}}\:! \\ $$$$\boldsymbol{\mathrm{let}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{try}}\:\boldsymbol{\mathrm{this}}\::\:\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{x}}}{\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{x}}}\boldsymbol{{dx}}. \\ $$
Question Number 135443 Answers: 0 Comments: 0
Question Number 135389 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\int_{β\infty} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{\left({x}^{\mathrm{2}} β{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow\infty} {e}^{{n}^{\mathrm{2}} } {U}_{{n}} \\ $$
Question Number 135382 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {ln}\left(\mathrm{1}β{x}^{\mathrm{4}} \right){dx}\:{with}\:{n} \\ $$$${integr}\:{natural} \\ $$
Question Number 135372 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\sqrt{{x}}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{3}} } \\ $$
Question Number 135368 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 135361 Answers: 1 Comments: 0
$${f}\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x},\left[β\mathrm{1},\mathrm{5}\right] \\ $$$${find}β{the}β{average}β{value} \\ $$$$ \\ $$
Question Number 135259 Answers: 2 Comments: 0
$$\int\left({x}^{\mathrm{2}} +\mathrm{3}{x}\right)\mathrm{cos}\:\left({x}\right){dx} \\ $$
Question Number 135257 Answers: 2 Comments: 1
$$\int{t}^{\mathrm{7}} {ln}\left({t}\right){dt} \\ $$
Question Number 135215 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{calculus}\:{preliminary}.... \\ $$$$\:\:\:{Q}:\:{f}\left({x}\right)=\mathrm{2}^{{x}} β\mathrm{2}^{β{x}} \:\Rightarrow\:{f}^{\:β\mathrm{1}} \left({x}\right)=??? \\ $$$$\:\:{solution}: \\ $$$$\:\:\:\:\:{y}=\mathrm{2}^{{x}} β\mathrm{2}^{β{x}} \:\:\:..... \\ $$$$\:\:\:\:\:\:{y}=\frac{\mathrm{2}^{\mathrm{2}{x}} β\mathrm{1}}{\mathrm{2}^{{x}} }\:\Rightarrow\mathrm{2}^{\mathrm{2}{x}} β{y}\mathrm{2}^{{x}} β\mathrm{1}=\mathrm{0}\:\:\left(\ast\right)\:... \\ $$$$\:\:\:::\:\:\mathrm{2}^{{x}} ={t}\Rightarrow\:{t}>\mathrm{0}\:...\checkmark\:.... \\ $$$$\:\:\:\:\:\:\:\left(\ast\right)\rightarrow...\:{t}^{\mathrm{2}} β{ty}β\mathrm{1}=\mathrm{0}\:.... \\ $$$$\:\:\:\:\:\:\:\:\Delta={y}^{\mathrm{2}} +\mathrm{4}>\mathrm{0}...\checkmark\:... \\ $$$$\:\:\:\:\:\:\:\:\:{t}=\frac{{y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\:\:...... \\ $$$$\:\:\:\:\:\:\:\:\:::\:\:\mathrm{2}^{{x}} =\frac{{y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\underset{{both}\:{sides}} {\overset{{taking}\:{log}} {\Rightarrow}}\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}:={log}_{\mathrm{2}} \left(\frac{{y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}^{\:β\mathrm{1}} \left({x}\right)={log}_{\mathrm{2}} \left(\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\right)\:\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......................... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\: \\ $$
Question Number 135174 Answers: 1 Comments: 0
$$\mathcal{Z}\:=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{arctan}\:\left(\mathrm{sin}\:\mathrm{x}\right)\:\mathrm{dx}\:+\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \mathrm{arcsin}\:\left(\mathrm{tan}\:\mathrm{x}\right)\:\mathrm{dx} \\ $$
Question Number 135231 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\int\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$$$ \\ $$$$\:\mathrm{help}\:\mathrm{me} \\ $$$$ \\ $$
Question Number 135103 Answers: 0 Comments: 1
$${f}\left({x}\right)=\mathrm{1}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(β{x}\right)^{{n}} }{{n}} \\ $$
Question Number 135062 Answers: 1 Comments: 0
$$\mathrm{Let}\:\mathrm{f}\left(\mathrm{0}\right)\:=\:\mathrm{a}\:;\:\mathrm{f}\left(\mathrm{3}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\int_{\mathrm{0}} ^{\:\mathrm{3}} \mathrm{x}^{\mathrm{2}} \:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$
Question Number 135033 Answers: 0 Comments: 0
Question Number 134947 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} \:}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}\:\right)\mathrm{dx}\:?\: \\ $$
Question Number 134962 Answers: 1 Comments: 0
Pg 95 Pg 96 Pg 97 Pg 98 Pg 99 Pg 100 Pg 101 Pg 102 Pg 103 Pg 104
Terms of Service
Privacy Policy
Contact: info@tinkutara.com