Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 100
Question Number 136626 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..........{nice}\:\:\:\:{calculus}......... \\ $$$$\:\:\:\:{suppose}\:{that}::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\varphi\left({p}\right)=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\left({p}+{x}\right)^{\mathrm{2}} }\:...\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{1}} \:\frac{\varphi\left({p}\right)}{\mathrm{1}+{p}}{dp}=?... \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 136572 Answers: 3 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:....{advanced}\:\:\:\:{calculus}.... \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}.\left({tan}\left({x}\right)\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}=?? \\ $$$$ \\ $$
Question Number 136497 Answers: 1 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......{nice}\:\:\:\:{calculus}..... \\ $$$$\:\:\:\:{prove}::\:\: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{ln}^{\mathrm{2}} \left({x}\right)}{dx}=\int_{\mathrm{0}\:} ^{\:\infty} \frac{{sin}\left({x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$ \\ $$
Question Number 136482 Answers: 0 Comments: 0
$${f}\left({x}\right)=\int_{−\Pi/\mathrm{4}} ^{\Pi\int/\mathrm{4}} {e}^{{xtant}} {dt} \\ $$
Question Number 136481 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\mathrm{50}\pi}{\mathrm{3}}} \mid{sinx}\mid{dx} \\ $$
Question Number 136476 Answers: 1 Comments: 0
$$\left(\mathrm{a}\right)\:\mathrm{Let}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}−\frac{\alpha}{\mathrm{x}}\right)^{\mathrm{2}} } \mathrm{dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{legitimate}\:\mathrm{to}\:\mathrm{take}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{I}\left(\alpha\right)\:\mathrm{and}\:\mathrm{also}\:\mathrm{I}'\left(\alpha\right)= \\ $$$$\mathrm{0}.\:\mathrm{Then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Use}\:\left(\mathrm{a}\right)\:\mathrm{to}\:\mathrm{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{x}^{−\mathrm{2}} \right)} \mathrm{dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}\alpha} . \\ $$$$ \\ $$
Question Number 136473 Answers: 0 Comments: 0
Question Number 136445 Answers: 2 Comments: 0
Question Number 136440 Answers: 2 Comments: 0
$$\:\int\:\frac{{dx}}{\mathrm{sin}\:^{\mathrm{6}} {x}}\:? \\ $$
Question Number 136425 Answers: 1 Comments: 3
$$\mathrm{If}\:\alpha>\mathrm{0}\:\mathrm{and}\:\beta>\mathrm{0},\:\mathrm{prove} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\alpha\mathrm{x}\right)}{\beta^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{\pi}{\mathrm{2}\beta}\mathrm{ln}\left(\alpha\beta\right) \\ $$
Question Number 136406 Answers: 0 Comments: 1
$$\mathrm{calculate}\:\:\mathrm{A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}{\left(\mathrm{x}^{\mathrm{2}} \:+\lambda^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 136405 Answers: 0 Comments: 0
$$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{2}\:\:\mathrm{determine}\:\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{and}\:\int\:\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{nf}\left(\mathrm{x}\right)\right)\mathrm{dx}\:\:\mathrm{with} \\ $$$$\mathrm{n}\:\mathrm{integr} \\ $$
Question Number 136403 Answers: 0 Comments: 0
$$\mathrm{find}\:\int\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{x}+\mathrm{3}}\mathrm{dx} \\ $$
Question Number 136402 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\mathrm{n}} \:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)\mathrm{arctan}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \mathrm{U}_{\mathrm{n}} \\ $$
Question Number 136401 Answers: 1 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 136400 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)} \:\:\:\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \right)\mathrm{dxdy} \\ $$
Question Number 136399 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$
Question Number 136396 Answers: 0 Comments: 1
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{a}} }{\mathrm{1}−\mathrm{x}}\mathrm{dx} \\ $$
Question Number 136381 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:......{sdvanced}\:\:\:{cslculus}...... \\ $$$$\:{if}\:\:{x}\in\mathbb{R}^{+} \:{and}::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \frac{{e}^{{t}} −\mathrm{1}}{{t}}{ln}\left(\frac{{x}}{{t}}\right){dt} \\ $$$$\:\:{then}\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} \boldsymbol{\phi}\left({x}\right){dx}=\zeta\left(\mathrm{2}\right) \\ $$
Question Number 136365 Answers: 3 Comments: 0
$$\int\:\frac{{dx}}{\mathrm{sin}\:{x}\:\sqrt{\mathrm{cos}\:{x}}}\:=? \\ $$
Question Number 136343 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{2021}} }{{x}−{ln}\left(\underset{{k}=\mathrm{0}} {\overset{\mathrm{2020}} {\sum}}\frac{{x}^{{k}} }{{k}!}\right)}\:\overset{?} {=}\:\mathrm{2021}!\: \\ $$
Question Number 136333 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}} }{\mathrm{1}+{t}+{t}^{\mathrm{2}} }{dt} \\ $$$${study}\:{first}\:{the}\:{convergence} \\ $$$$\left({a}\:{real}\right) \\ $$
Question Number 136325 Answers: 0 Comments: 1
$${please}\:{a}\:{generall}\:{Form}\:{for}\:{C}\left({n}\right) \\ $$$${C}\left({n}\right)=\frac{\mathrm{4}}{\pi^{\mathrm{2}} }\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \zeta\left(\mathrm{2}{k}\right)\zeta\left(\mathrm{2}{n}−\mathrm{2}{k}\right) \\ $$
Question Number 136279 Answers: 1 Comments: 0
Question Number 136267 Answers: 0 Comments: 1
Question Number 136211 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{guyz}}\:!\: \\ $$$$\boldsymbol{\mathrm{please}},\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{ur}}\:\boldsymbol{\mathrm{help}}\:! \\ $$$$\boldsymbol{\mathrm{I}}=\int_{\mathrm{1}} ^{\:\mathrm{5}} \boldsymbol{{xe}}^{\boldsymbol{{x}}^{\mathrm{3}} } \boldsymbol{{dx}} \\ $$
Pg 95 Pg 96 Pg 97 Pg 98 Pg 99 Pg 100 Pg 101 Pg 102 Pg 103 Pg 104
Terms of Service
Privacy Policy
Contact: info@tinkutara.com