∫_0 ^∞ ∫_0 ^∞ ((ln x ln y)/( (√(xy))))cos(x+y)=π^2 (γ+2 ln 2)
Sol:∫_0 ^∞ ∫_0 ^∞ ((ln x ln y)/( (√(xy))))cos(x+y)dxdy=Re((∫_0 ^∞ x^(−(1/2)) e^(ix) ln xdx)(∫_0 ^∞ y^(−(1/2)) e^(iy) ln ydy))
∫_0 ^∞ x^a e^(ix) dx=e^(iπ(a+1)) Γ(a+1),−1<Re a<0
∫_0 ^∞ x^a e^(ix) dx=∫_0 ^∞ x^a e^(ix) ln xdx=(∂/∂u)[e^(iπ(a+1)/2) Γ(a+1)]
=e^(iπ(a+1)) Γ(a+1)(((iπ)/2)+ψ(a+1))
a=−(1/2):
∫_0 ^∞ x^(−(1/2)) e^(ix) ln xdx=e^(iπ/1) (√π)(((iπ)/2)+ψ((1/2)))
c=e^(iπ/4) (√π)(((iπ)/2)−γ−2 ln 2)
e^(iπ/4) =((√2)/2)(1+i)
c=(√π)∙((√2)/2)(1+i)(−γ−2 ln 2+i(π/2))=((√(2π))/2)[(γ−ln 2−(π/2))+i(−γ−2 ln 2+(π/2))]
p=−γ−2 ln 2−(π/2),q=−γ−2 ln 2+(π/2)
c^2 =(((√(2π))/2))^2 (p+ip)^2 =((2π)/4)(p^2 −q^2 +2ipq)=(π/2)(p^2 −q^2 +2ipq)
p+q+2=(−γ−2 ln 2)
p−q=π
p^2 −q^2 =(p−q)(p+q)=(−π)∙2(−γ−2 ln 2)=2π(γ+2 ln 2)
[2π(γ+2 ln 2)+2ipq]=π^2 (γ+2 ln 2)+iπpq
Re(c^2 )=π^2 (γ+2 ln 2)
|