Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 1
Question Number 197821 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:{find}\:{the}\:{value}\:\:{of}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:\mathrm{ln}\:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\right)}{\mathrm{2}\:+\:{x}^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$ \\ $$
Question Number 197819 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(β\mathrm{1}\right)^{{n}β\mathrm{1}} \:{H}_{\:\mathrm{2}{n}} }{{n}}\:=\:? \\ $$$${where},{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}} \\ $$
Question Number 197802 Answers: 1 Comments: 0
$$\:\:\:\mathrm{I}=\underset{β\mathrm{2}} {\overset{\mathrm{6}} {\int}}\:\frac{\mid\mathrm{x}β\mathrm{1}\mid}{\mathrm{x}β\mathrm{1}}\:\mathrm{dx}\:=? \\ $$
Question Number 197783 Answers: 2 Comments: 0
$$\int\frac{{x}.\boldsymbol{{arctg}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\boldsymbol{{dx}}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 197767 Answers: 0 Comments: 1
Question Number 197744 Answers: 1 Comments: 0
$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{β\mathrm{1}} {x}\:{dx}=? \\ $$
Question Number 197734 Answers: 1 Comments: 0
$$\boldsymbol{{c}}{alcul}\:\int\left(\boldsymbol{{lnx}}\right)^{\sqrt{\boldsymbol{{x}}}} \boldsymbol{{dx}} \\ $$$$\boldsymbol{{help}}\:\:\boldsymbol{{pls}} \\ $$
Question Number 197637 Answers: 1 Comments: 3
Question Number 197575 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({tanx}\right)^{\frac{\mathrm{1}}{{n}}} {dx} \\ $$
Question Number 197436 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{dx}}{\mathrm{3}+\mathrm{tan}\:\mathrm{x}}\:=? \\ $$
Question Number 197431 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \left(\:\mathrm{1}+\:{x}^{\mathrm{2}} \:+\:{y}^{\:\mathrm{2}} +{z}^{\:\mathrm{2}} \right)^{\:β\frac{\mathrm{5}}{\mathrm{2}}} {dxdydz}=? \\ $$$$ \\ $$
Question Number 197376 Answers: 1 Comments: 0
$${Does}\:{anyone}\:{know}\:{how}\:{to}\:{prove}\:{this}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\int\int_{{V}} \:\frac{{dxdydz}}{\mathrm{1}+{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} }\:=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}^{\mathrm{4}} } \\ $$$${where}\:{V}\:{is}\:{the}\:{unit}\:{cube}\:\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} \\ $$$${Thankyou}. \\ $$$$ \\ $$
Question Number 197383 Answers: 0 Comments: 1
$$\:{evaluate}\:\:\int_{\mathrm{1}/\mathrm{4}} ^{\mathrm{1}} \int_{\sqrt{{x}β{x}^{\mathrm{2}} }} ^{\sqrt{{x}}} \frac{{x}^{\mathrm{2}} β{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }{dydx}\:=\:?? \\ $$
Question Number 197343 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right).{ln}\left({sinx}\right){dx} \\ $$
Question Number 197292 Answers: 2 Comments: 0
$$\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{{nx}^{{n}β\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:\:=\:\:\:? \\ $$
Question Number 197239 Answers: 1 Comments: 0
Question Number 197212 Answers: 0 Comments: 1
$$\mathrm{Is}\:\int{f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{x}} \underset{{x}\rightarrow{t}} {\mathrm{lim}}{f}\left({x}\right){dt}? \\ $$
Question Number 197191 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} β\mathrm{3}{x}+\mathrm{7}}{dx} \\ $$
Question Number 197190 Answers: 1 Comments: 2
$$\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{\mathrm{1}β{x}^{\mathrm{7}} }\:{dx}\:β\:\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:^{\mathrm{7}} \sqrt{\mathrm{1}β{x}^{\mathrm{3}} }\:{dx}\:\:=\:\:? \\ $$
Question Number 197177 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}^{\mathrm{2}} \left({cosx}\right){dx} \\ $$
Question Number 197111 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\cancel{ } \\ $$
Question Number 197060 Answers: 1 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{1}+\alpha\mathrm{sin}{t}\right)}{\mathrm{sin}{t}}{dt}=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}β\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{arccos}\alpha\right)^{\mathrm{2}} \\ $$
Question Number 197024 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{calculate} \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right)\:\sqrt{\:\mathrm{1}\overset{} {+}\:{sin}\left({x}\right){cos}\left({x}\right)}\:{dx}=? \\ $$$$ \\ $$
Question Number 196983 Answers: 3 Comments: 1
Question Number 196832 Answers: 0 Comments: 1
$$\int{x}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} {dx}=? \\ $$
Question Number 196817 Answers: 1 Comments: 0
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com