Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 1

Question Number 226561    Answers: 4   Comments: 0

Question Number 226554    Answers: 3   Comments: 0

Question Number 226339    Answers: 1   Comments: 0

Question Number 226292    Answers: 2   Comments: 0

Question Number 226290    Answers: 1   Comments: 0

Question Number 226178    Answers: 1   Comments: 0

Question Number 226148    Answers: 0   Comments: 0

Question Number 226147    Answers: 1   Comments: 0

Question Number 226113    Answers: 0   Comments: 0

Question Number 226003    Answers: 1   Comments: 1

If r^2 +r((√3)−(1/( (√3))))sin θ=(2/3) find A=∫_(π/6) ^( π/2) ((r^2 /2))dθ

$${If}\:\:{r}^{\mathrm{2}} +{r}\left(\sqrt{\mathrm{3}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\mathrm{sin}\:\theta=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${find}\:{A}=\int_{\pi/\mathrm{6}} ^{\:\pi/\mathrm{2}} \left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\right){d}\theta \\ $$$$\: \\ $$

Question Number 225994    Answers: 2   Comments: 0

Question Number 225788    Answers: 1   Comments: 25

∫_( (√2)−1) ^( y) (√((2(√2))y−1))dy

$$\int_{\:\sqrt{\mathrm{2}}−\mathrm{1}} ^{\:{y}} \sqrt{\left(\mathrm{2}\sqrt{\mathrm{2}}\right){y}−\mathrm{1}}{dy} \\ $$

Question Number 225629    Answers: 2   Comments: 0

Question Number 225391    Answers: 0   Comments: 0

Σ_(n = 1) ^∞ (− 1)^(n − 1) ((H_n H_(2n) ^((2)) )/n) = ?

$$\:\:\:\:\:\:\:\underset{\mathrm{n}\:\:\:=\:\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(−\:\:\:\:\mathrm{1}\right)^{\mathrm{n}\:\:\:\:−\:\:\:\mathrm{1}} \:\frac{\mathrm{H}_{\mathrm{n}} \:\mathrm{H}_{\mathrm{2n}} ^{\left(\mathrm{2}\right)} }{\mathrm{n}}\:\:\:\:\:\:\:=\:\:\:\:\:? \\ $$

Question Number 225382    Answers: 1   Comments: 0

Been a while guys ∫_0 ^( 1) ((xln(1+x))/(1+x^2 ))dx

$$\mathrm{Been}\:\mathrm{a}\:\mathrm{while}\:\mathrm{guys} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 224920    Answers: 0   Comments: 0

∫_( 0) ^( 1) ((x ln(1 + x) Li_2 (x))/(1 + x^2 )) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{ln}\left(\mathrm{1}\:\:\:+\:\:\:\mathrm{x}\right)\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}\:\:\:\:+\:\:\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 224839    Answers: 0   Comments: 0

∫_( 0) ^( 1) ((x tan^(− 1) (x) ln(1 − x))/(1 + x^2 )) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{ln}\left(\mathrm{1}\:\:\:−\:\:\:\mathrm{x}\right)}{\mathrm{1}\:\:\:+\:\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 224798    Answers: 0   Comments: 0

∫_( 0) ^( 1) ((arctan^2 (x) ln(1 − x))/x^2 ) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{arctan}^{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{ln}\left(\mathrm{1}\:\:\:−\:\:\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 224771    Answers: 0   Comments: 0

K=∫_0 ^( ∞) ((sinx)/(coshx)) (e^(−2x) −e^(−4x) )dx=?

$$ \\ $$$$\:\:{K}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sinx}}{{coshx}}\:\left({e}^{−\mathrm{2}{x}} −{e}^{−\mathrm{4}{x}} \right){dx}=?\:\:\:\:\: \\ $$$$\:\: \\ $$

Question Number 224505    Answers: 0   Comments: 0

∫_0 ^1 e^(ax) J_0 (ȷ_(0m) x)dx Where J_0 is the Bessel function and ȷ_(0m) its m-th zero

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{ax}} {J}_{\mathrm{0}} \left(\jmath_{\mathrm{0}{m}} {x}\right){dx} \\ $$$$\mathrm{Where}\:{J}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{and}\:\jmath_{\mathrm{0}{m}} \:\mathrm{its}\:{m}-\mathrm{th}\:\mathrm{zero} \\ $$

Question Number 224373    Answers: 0   Comments: 0

Show that ; I = ∫_( 0) ^( 1) ∫_( 0) ^( 1) ((ln(1+(√(xy))) ln(1+ (√((1−x)/(1−y)))))/( (√(1−x)) (√(1−y)) (x+y))) dxdy I = ζ(3)−((70)/(351))−((280)/(351)) ln 2−((40)/(117)) ln^2 2 +((412)/(351)) ln^3 2 + ((167)/(2106)) π^2 ln 2

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:; \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\underset{\:\:\mathrm{0}} {\overset{\:\:\mathrm{1}} {\int}}\underset{\:\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{xy}}\right)\:\mathrm{ln}\left(\mathrm{1}+\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}−{y}}}\right)}{\:\sqrt{\mathrm{1}−{x}}\:\:\sqrt{\mathrm{1}−{y}}\:\:\left({x}+{y}\right)}\:\:{dxdy}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\zeta\left(\mathrm{3}\right)−\frac{\mathrm{70}}{\mathrm{351}}−\frac{\mathrm{280}}{\mathrm{351}}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{40}}{\mathrm{117}}\:\mathrm{ln}^{\mathrm{2}} \:\mathrm{2}\:+\frac{\mathrm{412}}{\mathrm{351}}\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{2}\:+\:\frac{\mathrm{167}}{\mathrm{2106}}\:\pi^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 224248    Answers: 0   Comments: 0

∫_0 ^1 ((ln(1−x)Li_2 (1−(√x)))/x) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{x}}\right)}{\mathrm{x}}\:\:\mathrm{dx} \\ $$$$ \\ $$

Question Number 224201    Answers: 0   Comments: 0

∫ (x^3 /(x^7 −8x^2 )) dx

$$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{7}} −\mathrm{8x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 224182    Answers: 1   Comments: 0

Calculate I=∫ ((sin x)/(1+ sin x)) dx

$$\mathrm{Calculate} \\ $$$${I}=\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\:\mathrm{sin}\:{x}}\:\mathrm{d}{x} \\ $$

Question Number 224085    Answers: 2   Comments: 0

If f(x)=4x^3 +3x^2 +x, Then solve for a and b: max_(x∈R) {∫_x ^2 f(t)dt}=a where x=b

$$\mathrm{If}\:{f}\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +{x},\:\mathrm{Then}\:\mathrm{solve}\:\mathrm{for}\:{a}\:\mathrm{and}\:{b}: \\ $$$$\underset{{x}\in\mathbb{R}} {\mathrm{max}}\left\{\int_{{x}} ^{\mathrm{2}} {f}\left({t}\right){dt}\right\}={a}\:\mathrm{where}\:{x}={b} \\ $$

Question Number 223958    Answers: 0   Comments: 0

∫_0 ^∞ ((x sinh(x))/(1+cosh^2 (x))) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}\:\mathrm{sinh}\left({x}\right)}{\mathrm{1}+\mathrm{cosh}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x} \\ $$$$ \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com