Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 1
Question Number 225629 Answers: 2 Comments: 0
Question Number 225391 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\underset{\mathrm{n}\:\:\:=\:\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(−\:\:\:\:\mathrm{1}\right)^{\mathrm{n}\:\:\:\:−\:\:\:\mathrm{1}} \:\frac{\mathrm{H}_{\mathrm{n}} \:\mathrm{H}_{\mathrm{2n}} ^{\left(\mathrm{2}\right)} }{\mathrm{n}}\:\:\:\:\:\:\:=\:\:\:\:\:? \\ $$
Question Number 225382 Answers: 1 Comments: 0
$$\mathrm{Been}\:\mathrm{a}\:\mathrm{while}\:\mathrm{guys} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 224920 Answers: 0 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{ln}\left(\mathrm{1}\:\:\:+\:\:\:\mathrm{x}\right)\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}\:\:\:\:+\:\:\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$
Question Number 224839 Answers: 0 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{ln}\left(\mathrm{1}\:\:\:−\:\:\:\mathrm{x}\right)}{\mathrm{1}\:\:\:+\:\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$
Question Number 224798 Answers: 0 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{arctan}^{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{ln}\left(\mathrm{1}\:\:\:−\:\:\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$
Question Number 224771 Answers: 0 Comments: 0
$$ \\ $$$$\:\:{K}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sinx}}{{coshx}}\:\left({e}^{−\mathrm{2}{x}} −{e}^{−\mathrm{4}{x}} \right){dx}=?\:\:\:\:\: \\ $$$$\:\: \\ $$
Question Number 224505 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{ax}} {J}_{\mathrm{0}} \left(\jmath_{\mathrm{0}{m}} {x}\right){dx} \\ $$$$\mathrm{Where}\:{J}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{and}\:\jmath_{\mathrm{0}{m}} \:\mathrm{its}\:{m}-\mathrm{th}\:\mathrm{zero} \\ $$
Question Number 224373 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:; \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\underset{\:\:\mathrm{0}} {\overset{\:\:\mathrm{1}} {\int}}\underset{\:\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{xy}}\right)\:\mathrm{ln}\left(\mathrm{1}+\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}−{y}}}\right)}{\:\sqrt{\mathrm{1}−{x}}\:\:\sqrt{\mathrm{1}−{y}}\:\:\left({x}+{y}\right)}\:\:{dxdy}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\zeta\left(\mathrm{3}\right)−\frac{\mathrm{70}}{\mathrm{351}}−\frac{\mathrm{280}}{\mathrm{351}}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{40}}{\mathrm{117}}\:\mathrm{ln}^{\mathrm{2}} \:\mathrm{2}\:+\frac{\mathrm{412}}{\mathrm{351}}\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{2}\:+\:\frac{\mathrm{167}}{\mathrm{2106}}\:\pi^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 224248 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{x}}\right)}{\mathrm{x}}\:\:\mathrm{dx} \\ $$$$ \\ $$
Question Number 224201 Answers: 0 Comments: 0
$$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{7}} −\mathrm{8x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$
Question Number 224182 Answers: 1 Comments: 0
$$\mathrm{Calculate} \\ $$$${I}=\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\:\mathrm{sin}\:{x}}\:\mathrm{d}{x} \\ $$
Question Number 224085 Answers: 2 Comments: 0
$$\mathrm{If}\:{f}\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +{x},\:\mathrm{Then}\:\mathrm{solve}\:\mathrm{for}\:{a}\:\mathrm{and}\:{b}: \\ $$$$\underset{{x}\in\mathbb{R}} {\mathrm{max}}\left\{\int_{{x}} ^{\mathrm{2}} {f}\left({t}\right){dt}\right\}={a}\:\mathrm{where}\:{x}={b} \\ $$
Question Number 223958 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}\:\mathrm{sinh}\left({x}\right)}{\mathrm{1}+\mathrm{cosh}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x} \\ $$$$ \\ $$
Question Number 223933 Answers: 1 Comments: 0
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 223923 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 223920 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 223786 Answers: 0 Comments: 4
$$ \\ $$$$\:\:\:\:\boldsymbol{\mathrm{Evaluate}}\:;\:\int\:\sqrt{\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{{x}}}\:\boldsymbol{\mathrm{d}{x}}\:,\:\boldsymbol{\mathrm{Using}}\:\boldsymbol{\mathrm{feynman}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{trick}} \\ $$$$ \\ $$
Question Number 223728 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}_{\:} } ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{x}}\right)\centerdot\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+\sqrt{{x}}}\:\mathrm{d}{x} \\ $$
Question Number 223631 Answers: 2 Comments: 1
Question Number 223580 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}\:} \:\frac{{e}^{−\boldsymbol{{r}}^{\mathrm{2}} } \boldsymbol{\mathrm{sin}}\left(\mathrm{1}/\boldsymbol{{r}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{ln}}\left(\boldsymbol{{r}}+\mathrm{1}\right)}{\boldsymbol{{r}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{d}{r}} \\ $$$$ \\ $$
Question Number 223534 Answers: 1 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\:\mathrm{ln}^{\mathrm{3}} \left(\frac{\mathrm{1}\:\:−\:\:\mathrm{x}}{\mathrm{1}\:\:+\:\:\mathrm{x}}\right)\:\mathrm{dx} \\ $$
Question Number 223525 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mid\:\mathrm{cos}\:{x}\:+\:\mathrm{cos}\:{y}\:+\:\mathrm{cos}\:{z}\:\:\mid\:\:{dxdydz}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 223461 Answers: 1 Comments: 0
Question Number 223368 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\boldsymbol{\mathrm{ln}}\left(\frac{\mathrm{2}\:\boldsymbol{\mathrm{cos}}\left({x}^{\mathrm{2}} \right)\:+\:\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}{\mathrm{1}\:+\:\boldsymbol{\mathrm{cos}}\:\left({x}/\mathrm{2}\right)}\right)\:\boldsymbol{\mathrm{d}}{x} \\ $$$$ \\ $$
Question Number 223367 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\mathrm{ln}\left(\mathrm{2}\:\mathrm{cos}\left({x}^{\mathrm{2}} \right)\:+\:\mathrm{ln}^{\mathrm{2}} \:\left(\frac{{x}}{\mathrm{2}}\right)\:\mathrm{d}{x}\right. \\ $$$$ \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com