Previous in Permutation and Combination Next in Permutation and Combination | ||
Question Number 16868 by tawa tawa last updated on 27/Jun/17 | ||
$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}.\:\mathrm{EVERMORE}\:\mathrm{be}\:\mathrm{arrange} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{word}\:\mathrm{must}\:\mathrm{begin}\:\mathrm{with}\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{R} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{E} \\ $$ | ||
Answered by mrW1 last updated on 27/Jun/17 | ||
$$\left(\mathrm{i}\right)\:\mathrm{R}\:\mathrm{begins} \\ $$$$\frac{\mathrm{7}!}{\mathrm{3}!}=\mathrm{840} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{E}\:\mathrm{begins} \\ $$$$\frac{\mathrm{7}!}{\mathrm{2}!\mathrm{2}!}=\mathrm{1260} \\ $$$$ \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{no}\:\mathrm{restriction} \\ $$$$\frac{\mathrm{8}!}{\mathrm{3}!\mathrm{2}!}=\mathrm{3360} \\ $$ | ||
Commented by tawa tawa last updated on 27/Jun/17 | ||
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$ | ||