Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 152940 by nadovic last updated on 03/Sep/21

 In bottle manufacturing company, it  was observed that 5% of the bottles  manufactured were defective. In a   random sample of 150 bottles, find   probability that    (a) exactly 3,   (b) between 3 and 6,   (c) at most 4,   manufactured bottles are defective.                    [Take  e = 2.718]

$$\:\mathrm{In}\:\mathrm{bottle}\:\mathrm{manufacturing}\:\mathrm{company},\:\mathrm{it} \\ $$$$\mathrm{was}\:\mathrm{observed}\:\mathrm{that}\:\mathrm{5\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bottles} \\ $$$$\mathrm{manufactured}\:\mathrm{were}\:\mathrm{defective}.\:\mathrm{In}\:\mathrm{a}\: \\ $$$$\mathrm{random}\:\mathrm{sample}\:\mathrm{of}\:\mathrm{150}\:\mathrm{bottles},\:\mathrm{find}\: \\ $$$$\mathrm{probability}\:\mathrm{that}\: \\ $$$$\:\left({a}\right)\:\mathrm{exactly}\:\mathrm{3}, \\ $$$$\:\left({b}\right)\:\mathrm{between}\:\mathrm{3}\:\mathrm{and}\:\mathrm{6}, \\ $$$$\:\left({c}\right)\:\mathrm{at}\:\mathrm{most}\:\mathrm{4}, \\ $$$$\:\mathrm{manufactured}\:\mathrm{bottles}\:\mathrm{are}\:\mathrm{defective}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\mathrm{Take}\:\:{e}\:=\:\mathrm{2}.\mathrm{718}\right] \\ $$

Answered by physicstutes last updated on 03/Sep/21

here we′re gonna use the binomial  distribution: p(X=x)=^n C_x p^x q^(n−x)   X∼B(150,0.05)  (a) p(X=5)=^(150) C_5 (0.05)^5 (0.95)^(150−5)   [note: p+q=1]  (b) p(3<x<6)= p(X=4)+p(X=5)  (c) p(X≤4)= p(X=0)+p(X=1)+p(X=2)  +p(X=3)+p(X=4)

$$\mathrm{here}\:\mathrm{we}'\mathrm{re}\:\mathrm{gonna}\:\mathrm{use}\:\mathrm{the}\:\mathrm{binomial} \\ $$$$\mathrm{distribution}:\:{p}\left({X}={x}\right)=\:^{{n}} {C}_{{x}} {p}^{{x}} {q}^{{n}−{x}} \\ $$$${X}\sim{B}\left(\mathrm{150},\mathrm{0}.\mathrm{05}\right) \\ $$$$\left(\mathrm{a}\right)\:{p}\left({X}=\mathrm{5}\right)=\:^{\mathrm{150}} {C}_{\mathrm{5}} \left(\mathrm{0}.\mathrm{05}\right)^{\mathrm{5}} \left(\mathrm{0}.\mathrm{95}\right)^{\mathrm{150}−\mathrm{5}} \\ $$$$\left[\boldsymbol{\mathrm{note}}:\:{p}+{q}=\mathrm{1}\right] \\ $$$$\left(\mathrm{b}\right)\:{p}\left(\mathrm{3}<{x}<\mathrm{6}\right)=\:{p}\left({X}=\mathrm{4}\right)+{p}\left({X}=\mathrm{5}\right) \\ $$$$\left(\mathrm{c}\right)\:{p}\left({X}\leqslant\mathrm{4}\right)=\:{p}\left({X}=\mathrm{0}\right)+{p}\left({X}=\mathrm{1}\right)+{p}\left({X}=\mathrm{2}\right) \\ $$$$+{p}\left({X}=\mathrm{3}\right)+{p}\left({X}=\mathrm{4}\right) \\ $$

Commented by nadovic last updated on 04/Sep/21

How do you use e = 2.718 please ???

$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{use}\:{e}\:=\:\mathrm{2}.\mathrm{718}\:{please}\:??? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com