Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 15267 by Tinkutara last updated on 09/Jun/17

In an acute angled ΔABC, the  minimum value of tan A tan B tan C is?

$$\mathrm{In}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{angled}\:\Delta{ABC},\:\mathrm{the} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:{A}\:\mathrm{tan}\:{B}\:\mathrm{tan}\:{C}\:\mathrm{is}? \\ $$

Commented by prakash jain last updated on 09/Jun/17

A=0.1°,B=89.5°,C=89.5°  tan Atan Btan C=.518  A=0.0000000001°  B=C=89.99999999995°  tan Atan Btan C=4×10^(−10)   u can tanAtanBtan C as close  to 0 u want minimum is 0.  These calculated values are wrong as  highlighted in mrW1 comment below.

$${A}=\mathrm{0}.\mathrm{1}°,{B}=\mathrm{89}.\mathrm{5}°,{C}=\mathrm{89}.\mathrm{5}° \\ $$$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}=.\mathrm{518} \\ $$$${A}=\mathrm{0}.\mathrm{0000000001}° \\ $$$${B}={C}=\mathrm{89}.\mathrm{99999999995}° \\ $$$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}=\mathrm{4}×\mathrm{10}^{−\mathrm{10}} \\ $$$$\mathrm{u}\:\mathrm{can}\:\mathrm{tanAtanBtan}\:\mathrm{C}\:{as}\:{close} \\ $$$${to}\:\mathrm{0}\:{u}\:{want}\:{minimum}\:{is}\:\mathrm{0}. \\ $$$$\mathrm{These}\:\mathrm{calculated}\:\mathrm{values}\:\mathrm{are}\:\mathrm{wrong}\:\mathrm{as} \\ $$$$\mathrm{highlighted}\:\mathrm{in}\:\mathrm{mrW1}\:\mathrm{comment}\:\mathrm{below}. \\ $$

Commented by mrW1 last updated on 09/Jun/17

please check sir:   A=1°,B=89.5°,C=89.5°  tan Atan Btan C=229    A=0.1°,B=89.95°,C=89.95°  tan Atan Btan C=2292    A=0.001°,B=89.9995°,C=89.9995°  tan Atan Btan C=229189    tan Atan Btan C can be so large as  you want, so there is no maximum.    y=tan x tan^2  (90−(x/2))=((tan x)/(tan^2  (x/2)))  =((2tan (x/2))/(tan^2  (x/2)(1−tan^2  (x/2))))  =(2/(tan (x/2)(1−tan (x/2))(1+tan (x/2))))  lim_(x→0)  y=2×lim_(x→0)  (1/(tan (x/2)))=∞

$$\mathrm{please}\:\mathrm{check}\:\mathrm{sir}:\: \\ $$$${A}=\mathrm{1}°,{B}=\mathrm{89}.\mathrm{5}°,{C}=\mathrm{89}.\mathrm{5}° \\ $$$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}=\mathrm{229} \\ $$$$ \\ $$$${A}=\mathrm{0}.\mathrm{1}°,{B}=\mathrm{89}.\mathrm{95}°,{C}=\mathrm{89}.\mathrm{95}° \\ $$$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}=\mathrm{2292} \\ $$$$ \\ $$$${A}=\mathrm{0}.\mathrm{001}°,{B}=\mathrm{89}.\mathrm{9995}°,{C}=\mathrm{89}.\mathrm{9995}° \\ $$$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}=\mathrm{229189} \\ $$$$ \\ $$$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}\:\mathrm{can}\:\mathrm{be}\:\mathrm{so}\:\mathrm{large}\:\mathrm{as} \\ $$$$\mathrm{you}\:\mathrm{want},\:\mathrm{so}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{maximum}. \\ $$$$ \\ $$$$\mathrm{y}=\mathrm{tan}\:\mathrm{x}\:\mathrm{tan}^{\mathrm{2}} \:\left(\mathrm{90}−\frac{\mathrm{x}}{\mathrm{2}}\right)=\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{x}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2tan}\:\frac{\mathrm{x}}{\mathrm{2}}}{\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{x}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{x}}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{y}=\mathrm{2}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}}=\infty \\ $$

Commented by Tinkutara last updated on 09/Jun/17

But answer is 3(√3) . Maybe its by  assuming ∠A = ∠B = ∠C = (π/3) . But  how?

$$\mathrm{But}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{3}\sqrt{\mathrm{3}}\:.\:\mathrm{Maybe}\:\mathrm{its}\:\mathrm{by} \\ $$$$\mathrm{assuming}\:\angle{A}\:=\:\angle{B}\:=\:\angle{C}\:=\:\frac{\pi}{\mathrm{3}}\:.\:\mathrm{But} \\ $$$$\mathrm{how}? \\ $$

Commented by prakash jain last updated on 09/Jun/17

Thanks mrW1. My calculator  was set to radians when i did  the above calculation.

$$\mathrm{Thanks}\:\mathrm{mrW1}.\:\mathrm{My}\:\mathrm{calculator} \\ $$$$\mathrm{was}\:\mathrm{set}\:\mathrm{to}\:\mathrm{radians}\:\mathrm{when}\:\mathrm{i}\:\mathrm{did} \\ $$$$\mathrm{the}\:\mathrm{above}\:\mathrm{calculation}. \\ $$

Commented by prakash jain last updated on 10/Jun/17

tan Atan Btan C=tan Atan Btan (π−(A+B)  −tan Atan B((tan A+tan B)/(1−tan Atan B))  tan A=x  tan B=y  f(x,y)=−xy((x+y)/(1−xy))=−((x^2 y+xy^2 )/(1−xy))  (∂f/∂x)=−(((2xy+y^2 )(1−xy)−(−y)(x^2 y+xy^(2)) )/((1−xy)^2 ))  =−((2xy+y^2 −2x^2 y^2 −xy^3 +x^2 y^2 +xy^3 )/((1−xy)^2 ))  =−((2xy+y^2 −x^2 y^2 )/((1−xy)^2 ))  (∂f/∂x)=0⇒2xy+y^2 −x^2 y^2 =0   (i)  (∂f/∂y)=0⇒2xy+x^2 −x^2 y^2 =0   (ii)  stationary point when (∂f/∂x)=0 ∧(∂f/∂y)=0  (i)−(ii)=0⇒y^2 −x^2 =0⇒x=±y  for acute angle x>0∧y>0⇒x=y  put x=y in (i)  2x^2 +x^2 −x^4 =0  3x^2 −x^4 =0⇒x=0 ∨x=(√3),y=(√3)  to check if x=(√3) and y=(√3) is  indeed a minima and not a saddle  point or maxima following  condition must be checked at point  ((√3),(√3))  f_(xx) f_(yy) −f_(xy) ^2 >0  f_(xx) >0,f_(yy) >0

$$\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:{C}=\mathrm{tan}\:{A}\mathrm{tan}\:{B}\mathrm{tan}\:\left(\pi−\left({A}+{B}\right)\right. \\ $$$$−\mathrm{tan}\:{A}\mathrm{tan}\:{B}\frac{\mathrm{tan}\:{A}+\mathrm{tan}\:{B}}{\mathrm{1}−\mathrm{tan}\:{A}\mathrm{tan}\:{B}} \\ $$$$\mathrm{tan}\:{A}={x} \\ $$$$\mathrm{tan}\:{B}={y} \\ $$$${f}\left({x},{y}\right)=−{xy}\frac{{x}+{y}}{\mathrm{1}−{xy}}=−\frac{{x}^{\mathrm{2}} {y}+{xy}^{\mathrm{2}} }{\mathrm{1}−{xy}} \\ $$$$\frac{\partial{f}}{\partial{x}}=−\frac{\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{xy}\right)−\left(−{y}\right)\left({x}^{\mathrm{2}} {y}+{xy}^{\left.\mathrm{2}\right)} \right.}{\left(\mathrm{1}−{xy}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{2}{xy}+{y}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −{xy}^{\mathrm{3}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{xy}^{\mathrm{3}} }{\left(\mathrm{1}−{xy}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{2}{xy}+{y}^{\mathrm{2}} −{x}^{\mathrm{2}} {y}^{\mathrm{2}} }{\left(\mathrm{1}−{xy}\right)^{\mathrm{2}} } \\ $$$$\frac{\partial{f}}{\partial{x}}=\mathrm{0}\Rightarrow\mathrm{2}{xy}+{y}^{\mathrm{2}} −{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{0}\:\:\:\left({i}\right) \\ $$$$\frac{\partial{f}}{\partial{y}}=\mathrm{0}\Rightarrow\mathrm{2}{xy}+{x}^{\mathrm{2}} −{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{0}\:\:\:\left({ii}\right) \\ $$$${stationary}\:{point}\:{when}\:\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\wedge\frac{\partial{f}}{\partial{y}}=\mathrm{0} \\ $$$$\left({i}\right)−\left({ii}\right)=\mathrm{0}\Rightarrow{y}^{\mathrm{2}} −{x}^{\mathrm{2}} =\mathrm{0}\Rightarrow{x}=\pm{y} \\ $$$${for}\:{acute}\:{angle}\:{x}>\mathrm{0}\wedge{y}>\mathrm{0}\Rightarrow{x}={y} \\ $$$${put}\:{x}={y}\:{in}\:\left({i}\right) \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{x}^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −{x}^{\mathrm{4}} =\mathrm{0}\Rightarrow{x}=\mathrm{0}\:\vee{x}=\sqrt{\mathrm{3}},{y}=\sqrt{\mathrm{3}} \\ $$$${to}\:{check}\:{if}\:{x}=\sqrt{\mathrm{3}}\:{and}\:{y}=\sqrt{\mathrm{3}}\:\mathrm{is} \\ $$$$\mathrm{indeed}\:\mathrm{a}\:\mathrm{minima}\:\mathrm{and}\:\mathrm{not}\:\mathrm{a}\:\mathrm{saddle} \\ $$$$\mathrm{point}\:\mathrm{or}\:\mathrm{maxima}\:\mathrm{following} \\ $$$$\mathrm{condition}\:\mathrm{must}\:\mathrm{be}\:\mathrm{checked}\:{at}\:{point} \\ $$$$\left(\sqrt{\mathrm{3}},\sqrt{\mathrm{3}}\right) \\ $$$${f}_{{xx}} {f}_{{yy}} −{f}_{{xy}} ^{\mathrm{2}} >\mathrm{0} \\ $$$${f}_{{xx}} >\mathrm{0},{f}_{{yy}} >\mathrm{0} \\ $$

Commented by mrW1 last updated on 09/Jun/17

this is the exact proof. thanks.

$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{proof}.\:\mathrm{thanks}. \\ $$

Answered by mrW1 last updated on 09/Jun/17

Due to the symmetry the minimum  occurs when all variables are equal,  i.e. A=B=C=60°  tan A tan B tan C=(√3)×(√3)×(√3)=3(√3)    This can be proved as following.  To make the thing simple let us keep  C unchanged and see what happens  if  A and B are different from 60°.    When A=B=60°, we have  tan A tan B=(√3)×(√3)=3    Whenn A and B differ from 60°, let′s  say A=60°+δ and consequently   B=69°−δ, then  tan A tan B=tan (60+δ) tan (60−δ)  =((tan 60+tan δ)/(1−tan 60 tan δ))×((tan 60−tan δ)/(1+tan 60 tan δ))  =((tan^2  60−tan^2  δ)/(1−tan^2  60 tan^2  δ))  =((3−tan^2  δ)/(1−3 tan^2  δ))=((3−9tan^2  δ+8tan^2  δ)/(1−3tan^2  δ))  =3+((8tan^2  δ)/(1−3tan^2  δ))  ∵ 0<δ<30° (acute triangle)  0<tan δ<(1/(√3))  0<tan^2  δ<(1/3)  0<3tan^2  δ<1  ∴1−3tan^2  δ>0  ⇒3+((8tan^2  δ)/(1−3tan^2  δ))>3=tan 60° tan 60°  that means when A, B (and also C)  differ from 60°, the value of  tan A tan B tan C will increase,  therefore we have its minimum at  A=B=C=60°, and the minimum  value is 3(√(3.))

$$\mathrm{Due}\:\mathrm{to}\:\mathrm{the}\:\mathrm{symmetry}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{occurs}\:\mathrm{when}\:\mathrm{all}\:\mathrm{variables}\:\mathrm{are}\:\mathrm{equal}, \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{60}° \\ $$$$\mathrm{tan}\:\mathrm{A}\:\mathrm{tan}\:\mathrm{B}\:\mathrm{tan}\:\mathrm{C}=\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}}=\mathrm{3}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{proved}\:\mathrm{as}\:\mathrm{following}. \\ $$$$\mathrm{To}\:\mathrm{make}\:\mathrm{the}\:\mathrm{thing}\:\mathrm{simple}\:\mathrm{let}\:\mathrm{us}\:\mathrm{keep} \\ $$$$\mathrm{C}\:\mathrm{unchanged}\:\mathrm{and}\:\mathrm{see}\:\mathrm{what}\:\mathrm{happens} \\ $$$$\mathrm{if}\:\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{different}\:\mathrm{from}\:\mathrm{60}°. \\ $$$$ \\ $$$$\mathrm{When}\:\mathrm{A}=\mathrm{B}=\mathrm{60}°,\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{tan}\:\mathrm{A}\:\mathrm{tan}\:\mathrm{B}=\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}}=\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Whenn}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{differ}\:\mathrm{from}\:\mathrm{60}°,\:\mathrm{let}'\mathrm{s} \\ $$$$\mathrm{say}\:\mathrm{A}=\mathrm{60}°+\delta\:\mathrm{and}\:\mathrm{consequently}\: \\ $$$$\mathrm{B}=\mathrm{69}°−\delta,\:\mathrm{then} \\ $$$$\mathrm{tan}\:\mathrm{A}\:\mathrm{tan}\:\mathrm{B}=\mathrm{tan}\:\left(\mathrm{60}+\delta\right)\:\mathrm{tan}\:\left(\mathrm{60}−\delta\right) \\ $$$$=\frac{\mathrm{tan}\:\mathrm{60}+\mathrm{tan}\:\delta}{\mathrm{1}−\mathrm{tan}\:\mathrm{60}\:\mathrm{tan}\:\delta}×\frac{\mathrm{tan}\:\mathrm{60}−\mathrm{tan}\:\delta}{\mathrm{1}+\mathrm{tan}\:\mathrm{60}\:\mathrm{tan}\:\delta} \\ $$$$=\frac{\mathrm{tan}^{\mathrm{2}} \:\mathrm{60}−\mathrm{tan}^{\mathrm{2}} \:\delta}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\mathrm{60}\:\mathrm{tan}^{\mathrm{2}} \:\delta} \\ $$$$=\frac{\mathrm{3}−\mathrm{tan}^{\mathrm{2}} \:\delta}{\mathrm{1}−\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\delta}=\frac{\mathrm{3}−\mathrm{9tan}^{\mathrm{2}} \:\delta+\mathrm{8tan}^{\mathrm{2}} \:\delta}{\mathrm{1}−\mathrm{3tan}^{\mathrm{2}} \:\delta} \\ $$$$=\mathrm{3}+\frac{\mathrm{8tan}^{\mathrm{2}} \:\delta}{\mathrm{1}−\mathrm{3tan}^{\mathrm{2}} \:\delta} \\ $$$$\because\:\mathrm{0}<\delta<\mathrm{30}°\:\left(\mathrm{acute}\:\mathrm{triangle}\right) \\ $$$$\mathrm{0}<\mathrm{tan}\:\delta<\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\mathrm{0}<\mathrm{tan}^{\mathrm{2}} \:\delta<\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{0}<\mathrm{3tan}^{\mathrm{2}} \:\delta<\mathrm{1} \\ $$$$\therefore\mathrm{1}−\mathrm{3tan}^{\mathrm{2}} \:\delta>\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}+\frac{\mathrm{8tan}^{\mathrm{2}} \:\delta}{\mathrm{1}−\mathrm{3tan}^{\mathrm{2}} \:\delta}>\mathrm{3}=\mathrm{tan}\:\mathrm{60}°\:\mathrm{tan}\:\mathrm{60}° \\ $$$$\mathrm{that}\:\mathrm{means}\:\mathrm{when}\:\mathrm{A},\:\mathrm{B}\:\left(\mathrm{and}\:\mathrm{also}\:\mathrm{C}\right) \\ $$$$\mathrm{differ}\:\mathrm{from}\:\mathrm{60}°,\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{tan}\:\mathrm{A}\:\mathrm{tan}\:\mathrm{B}\:\mathrm{tan}\:\mathrm{C}\:\mathrm{will}\:\mathrm{increase}, \\ $$$$\mathrm{therefore}\:\mathrm{we}\:\mathrm{have}\:\mathrm{its}\:\mathrm{minimum}\:\mathrm{at} \\ $$$$\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{60}°,\:\mathrm{and}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{is}\:\mathrm{3}\sqrt{\mathrm{3}.} \\ $$

Commented by Tinkutara last updated on 10/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by Tinkutara last updated on 12/Jun/17

I found the best method:  In any ΔABC, we have  tan A + tan B + tan C = tan A tan B tan C  = x (say)  Now (x/3) ≥ (x)^(1/3)  [∵ AM ≥ GM]  (x^3 /(27)) ≥ x  x ≥ 3(√3)

$$\mathrm{I}\:\mathrm{found}\:\mathrm{the}\:\mathrm{best}\:\mathrm{method}: \\ $$$$\mathrm{In}\:\mathrm{any}\:\Delta{ABC},\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{tan}\:{A}\:+\:\mathrm{tan}\:{B}\:+\:\mathrm{tan}\:{C}\:=\:\mathrm{tan}\:{A}\:\mathrm{tan}\:{B}\:\mathrm{tan}\:{C} \\ $$$$=\:{x}\:\left(\mathrm{say}\right) \\ $$$$\mathrm{Now}\:\frac{{x}}{\mathrm{3}}\:\geqslant\:\sqrt[{\mathrm{3}}]{{x}}\:\left[\because\:\mathrm{AM}\:\geqslant\:\mathrm{GM}\right] \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{27}}\:\geqslant\:{x} \\ $$$${x}\:\geqslant\:\mathrm{3}\sqrt{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com