Question Number 170912 by MathsFan last updated on 03/Jun/22 | ||
![]() | ||
$$\boldsymbol{\mathrm{In}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{{QRS}},\:\boldsymbol{{QR}}=\mathrm{14}\boldsymbol{{cm}},\:\boldsymbol{{RS}}=\mathrm{12}\boldsymbol{{cm}} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{{SQ}}=\mathrm{9}\boldsymbol{{cm}}.\:\boldsymbol{\mathrm{An}}\:\boldsymbol{\mathrm{incircle}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{drawn}}\:\boldsymbol{\mathrm{to}} \\ $$$$\boldsymbol{\mathrm{touch}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{three}}\:\boldsymbol{\mathrm{sides}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{{X}},\boldsymbol{{Y}},\boldsymbol{{Z}}\:\boldsymbol{\mathrm{respectively}}.\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{lenghts}} \\ $$$$\boldsymbol{{QX}},\:\boldsymbol{{RY}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{{SZ}}. \\ $$ | ||
Answered by som(math1967) last updated on 03/Jun/22 | ||
![]() | ||
$${let}\:{QX}={QZ}={a} \\ $$$${RX}={RY}={b} \\ $$$${SY}={SZ}={c} \\ $$$${QR}=\mathrm{14} \\ $$$${QX}+{XR}=\mathrm{14} \\ $$$$\:{a}+{b}=\mathrm{14}\:....{i} \\ $$$${RS}=\mathrm{12} \\ $$$${RY}+{SY}=\mathrm{12} \\ $$$$\:{b}+{c}=\mathrm{12}\:....{ii} \\ $$$${QS}=\mathrm{9} \\ $$$${SZ}+{ZQ}=\mathrm{9} \\ $$$${c}+{a}=\mathrm{9}\:...{iii} \\ $$$$\left.{i}\left.\right)\left.\:+{ii}\right)+{iii}\right) \\ $$$$\:\mathrm{2}\left({a}+{b}+{c}\right)=\mathrm{14}+\mathrm{12}+\mathrm{9} \\ $$$${a}+{b}+{c}=\mathrm{17}.\mathrm{5} \\ $$$$\Rightarrow\left({a}+{b}+{c}\right)−\left({b}+{c}\right)=\mathrm{17}.\mathrm{5}−\mathrm{12} \\ $$$$\therefore{a}=\mathrm{5}.\mathrm{5} \\ $$$$\:{b}=\mathrm{14}−{a}=\mathrm{14}−\mathrm{5}.\mathrm{5}=\mathrm{8}.\mathrm{5} \\ $$$${c}=\mathrm{12}−\mathrm{8}.\mathrm{5}=\mathrm{3}.\mathrm{5} \\ $$$$\therefore{QX}=\mathrm{5}.\mathrm{5}{cm} \\ $$$${RY}=\mathrm{8}.\mathrm{5}{cm} \\ $$$${SZ}=\mathrm{3}.\mathrm{5}{cm} \\ $$ | ||
Commented by som(math1967) last updated on 03/Jun/22 | ||
![]() | ||
Commented by MathsFan last updated on 03/Jun/22 | ||
![]() | ||
$${thank}\:{you}\:{sir} \\ $$$${i}\:{am}\:{very}\:{greatful} \\ $$ | ||
Commented by otchereabdullai@gmail.com last updated on 03/Jun/22 | ||
![]() | ||
$$\mathrm{nice}! \\ $$ | ||