Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 18320 by Tinkutara last updated on 18/Jul/17

In a triangle ABC with fixed base BC,  the vertex A moves such that cos B +  cos C = 4 sin^2  (A/2) . If a, b and c denote  the lengths of the sides of the triangle  opposite to the angles A, B and C  respectively, then  (1) b + c = 4a  (2) b + c = 2a  (3) Locus of point A is an ellipse  (4) Locus of point A is a pair of straight  lines

$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:{ABC}\:\mathrm{with}\:\mathrm{fixed}\:\mathrm{base}\:{BC}, \\ $$$$\mathrm{the}\:\mathrm{vertex}\:{A}\:\mathrm{moves}\:\mathrm{such}\:\mathrm{that}\:\mathrm{cos}\:{B}\:+ \\ $$$$\mathrm{cos}\:{C}\:=\:\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{A}}{\mathrm{2}}\:.\:\mathrm{If}\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{denote} \\ $$$$\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{the}\:\mathrm{angles}\:{A},\:{B}\:\mathrm{and}\:{C} \\ $$$$\mathrm{respectively},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{b}\:+\:{c}\:=\:\mathrm{4}{a} \\ $$$$\left(\mathrm{2}\right)\:{b}\:+\:{c}\:=\:\mathrm{2}{a} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Locus}\:\mathrm{of}\:\mathrm{point}\:{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{ellipse} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Locus}\:\mathrm{of}\:\mathrm{point}\:{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{straight} \\ $$$$\mathrm{lines} \\ $$

Answered by ajfour last updated on 19/Jul/17

Commented by ajfour last updated on 19/Jul/17

Given:   cos B+cos C=4sin^2 (A/2)  and a=constant.  ⇒  cos B+cos C=2(1−cos A)  cos B=(x/c) ,  cos C=((a−x)/b) ,  cos A=((b^2 +c^2 −a^2 )/(2bc))   x^2 +y^2 =c^2   (a−x)^2 +y^2 =b^2   subtracting we get     a(2x−a)=−(b+c)(b−c)  ⇒  x= (a/2)−(((b+c)(b−c))/(2a))            =((a^2 −(b+c)(b−c))/(2a))    .....(i)  from given condition    (x/c)+((a−x)/b)=2(1−cos A)  ⇒   ((ac+x(b−c))/(bc))=2(1−((b^2 +c^2 −a^2 )/(2bc)))  replacing x from (i):   (( a)/b)+(((b−c)/(2abc)))[a^2 −(b+c)(b−c)]                                  =2[((2bc−(b^2 +c^2 )+a^2 )/(2bc))]  2a^2 c+a^2 (b−c)−(b−c)^2 (b+c)                              =−2a(b−c)^2 +2a^3   ⇒a^2 (2c+b−c−2a)                             =(b−c)^2 (b+c−2a)   a^2 (b+c−2a)=(b−c)^2 (b+c−2a)  ⇒  2a=b+c   or    a=∣b−c∣  If we accept : b+c =2a=constant,  then locus of A is an ellipse with  foci at B and C.   If we accept a=∣b−c∣ then A lies                      on produced BC and on either side.

$$\mathrm{Given}:\:\:\:\mathrm{cos}\:\mathrm{B}+\mathrm{cos}\:\mathrm{C}=\mathrm{4sin}\:^{\mathrm{2}} \frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{a}=\mathrm{constant}. \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\mathrm{B}+\mathrm{cos}\:\mathrm{C}=\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{A}\right) \\ $$$$\mathrm{cos}\:\mathrm{B}=\frac{\mathrm{x}}{\mathrm{c}}\:,\:\:\mathrm{cos}\:\mathrm{C}=\frac{\mathrm{a}−\mathrm{x}}{\mathrm{b}}\:, \\ $$$$\mathrm{cos}\:\mathrm{A}=\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }{\mathrm{2bc}} \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} \\ $$$$\left(\mathrm{a}−\mathrm{x}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} \\ $$$$\mathrm{subtracting}\:\mathrm{we}\:\mathrm{get} \\ $$$$\:\:\:\mathrm{a}\left(\mathrm{2x}−\mathrm{a}\right)=−\left(\mathrm{b}+\mathrm{c}\right)\left(\mathrm{b}−\mathrm{c}\right) \\ $$$$\Rightarrow\:\:\mathrm{x}=\:\frac{\mathrm{a}}{\mathrm{2}}−\frac{\left(\mathrm{b}+\mathrm{c}\right)\left(\mathrm{b}−\mathrm{c}\right)}{\mathrm{2a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{a}^{\mathrm{2}} −\left(\mathrm{b}+\mathrm{c}\right)\left(\mathrm{b}−\mathrm{c}\right)}{\mathrm{2a}}\:\:\:\:.....\left(\mathrm{i}\right) \\ $$$$\mathrm{from}\:\mathrm{given}\:\mathrm{condition} \\ $$$$\:\:\frac{\mathrm{x}}{\mathrm{c}}+\frac{\mathrm{a}−\mathrm{x}}{\mathrm{b}}=\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{A}\right) \\ $$$$\Rightarrow\:\:\:\frac{\mathrm{ac}+\mathrm{x}\left(\mathrm{b}−\mathrm{c}\right)}{\mathrm{bc}}=\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }{\mathrm{2bc}}\right) \\ $$$$\mathrm{replacing}\:\mathrm{x}\:\mathrm{from}\:\left(\mathrm{i}\right): \\ $$$$\:\frac{\:\mathrm{a}}{\mathrm{b}}+\left(\frac{\mathrm{b}−\mathrm{c}}{\mathrm{2abc}}\right)\left[\mathrm{a}^{\mathrm{2}} −\left(\mathrm{b}+\mathrm{c}\right)\left(\mathrm{b}−\mathrm{c}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left[\frac{\mathrm{2bc}−\left(\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)+\mathrm{a}^{\mathrm{2}} }{\mathrm{2bc}}\right] \\ $$$$\mathrm{2a}^{\mathrm{2}} \mathrm{c}+\mathrm{a}^{\mathrm{2}} \left(\mathrm{b}−\mathrm{c}\right)−\left(\mathrm{b}−\mathrm{c}\right)^{\mathrm{2}} \left(\mathrm{b}+\mathrm{c}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{2a}\left(\mathrm{b}−\mathrm{c}\right)^{\mathrm{2}} +\mathrm{2a}^{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} \left(\mathrm{2c}+\mathrm{b}−\mathrm{c}−\mathrm{2a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{b}−\mathrm{c}\right)^{\mathrm{2}} \left(\mathrm{b}+\mathrm{c}−\mathrm{2a}\right) \\ $$$$\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{b}+\mathrm{c}−\mathrm{2a}\right)=\left(\mathrm{b}−\mathrm{c}\right)^{\mathrm{2}} \left(\mathrm{b}+\mathrm{c}−\mathrm{2a}\right) \\ $$$$\Rightarrow\:\:\mathrm{2a}=\mathrm{b}+\mathrm{c}\:\:\:\mathrm{or}\:\:\:\:\mathrm{a}=\mid\mathrm{b}−\mathrm{c}\mid \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{accept}\::\:\mathrm{b}+\mathrm{c}\:=\mathrm{2a}=\mathrm{constant}, \\ $$$$\mathrm{then}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{with} \\ $$$$\mathrm{foci}\:\mathrm{at}\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}. \\ $$$$\:\mathrm{If}\:\mathrm{we}\:\mathrm{accept}\:\mathrm{a}=\mid\mathrm{b}−\mathrm{c}\mid\:\mathrm{then}\:\mathrm{A}\:\mathrm{lies}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{on}\:\mathrm{produced}\:\mathrm{BC}\:\mathrm{and}\:\mathrm{on}\:\mathrm{either}\:\mathrm{side}. \\ $$

Commented by Tinkutara last updated on 19/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com