Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 134097 by bobhans last updated on 27/Feb/21

In a square ABCD , a triangle  APQ inscribed in it. AP=4 cm,  PQ=3 cm and AQ=5 cm. Point  P is on the side BC and point Q  is on side CD. Find the area of the  square ABCD.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{square}\:\mathrm{ABCD}\:,\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{APQ}\:\mathrm{inscribed}\:\mathrm{in}\:\mathrm{it}.\:\mathrm{AP}=\mathrm{4}\:\mathrm{cm}, \\ $$$$\mathrm{PQ}=\mathrm{3}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{AQ}=\mathrm{5}\:\mathrm{cm}.\:\mathrm{Point} \\ $$$$\mathrm{P}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{side}\:\mathrm{BC}\:\mathrm{and}\:\mathrm{point}\:\mathrm{Q} \\ $$$$\mathrm{is}\:\mathrm{on}\:\mathrm{side}\:\mathrm{CD}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{square}\:\mathrm{ABCD}. \\ $$

Answered by mr W last updated on 27/Feb/21

Commented by mr W last updated on 27/Feb/21

BP=(√(4^2 −a^2 ))  ((PC)/3)=(a/4)  ⇒PC=((3a)/4)  (√(4^2 −a^2 ))+((3a)/4)=a  4^2 −a^2 =(a^2 /(16))  a^2 =((16^2 )/(17))  ⇒a=((16)/( (√(17))))  area of ABCD=a^2 =((16^2 )/(17))=((256)/(17))≈15.05

$${BP}=\sqrt{\mathrm{4}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$\frac{{PC}}{\mathrm{3}}=\frac{{a}}{\mathrm{4}} \\ $$$$\Rightarrow{PC}=\frac{\mathrm{3}{a}}{\mathrm{4}} \\ $$$$\sqrt{\mathrm{4}^{\mathrm{2}} −{a}^{\mathrm{2}} }+\frac{\mathrm{3}{a}}{\mathrm{4}}={a} \\ $$$$\mathrm{4}^{\mathrm{2}} −{a}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{16}^{\mathrm{2}} }{\mathrm{17}} \\ $$$$\Rightarrow{a}=\frac{\mathrm{16}}{\:\sqrt{\mathrm{17}}} \\ $$$${area}\:{of}\:{ABCD}={a}^{\mathrm{2}} =\frac{\mathrm{16}^{\mathrm{2}} }{\mathrm{17}}=\frac{\mathrm{256}}{\mathrm{17}}\approx\mathrm{15}.\mathrm{05} \\ $$

Commented by bobhans last updated on 28/Feb/21

thanks

$$\mathrm{thanks} \\ $$

Commented by otchereabdullai@gmail.com last updated on 12/Mar/21

Thanks prof w

$$\mathrm{Thanks}\:\mathrm{prof}\:\mathrm{w} \\ $$

Answered by liberty last updated on 01/Mar/21

Commented by liberty last updated on 01/Mar/21

(4u)^2 +u^2  = 16   ⇔ 16u^2 +u^2  = 16 ; u^2 = ((16)/(17))  so area of square is 16u^2  = ((256)/(17)) ≈15.0588

$$\left(\mathrm{4}{u}\right)^{\mathrm{2}} +{u}^{\mathrm{2}} \:=\:\mathrm{16}\: \\ $$$$\Leftrightarrow\:\mathrm{16u}^{\mathrm{2}} +\mathrm{u}^{\mathrm{2}} \:=\:\mathrm{16}\:;\:\mathrm{u}^{\mathrm{2}} =\:\frac{\mathrm{16}}{\mathrm{17}} \\ $$$$\mathrm{so}\:\mathrm{area}\:\mathrm{of}\:\mathrm{square}\:\mathrm{is}\:\mathrm{16u}^{\mathrm{2}} \:=\:\frac{\mathrm{256}}{\mathrm{17}}\:\approx\mathrm{15}.\mathrm{0588} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com