Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 22515 by Tinkutara last updated on 19/Oct/17

In a quadrilateral ABCD, it is given  that AB is parallel to CD and the  diagonals AC and BD are perpendicular  to each other.  Show that  (a) AD.BC ≥ AB.CD;  (b) AD + BC ≥ AB + CD.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{quadrilateral}\:{ABCD},\:\mathrm{it}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{that}\:{AB}\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:{CD}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{diagonals}\:{AC}\:\mathrm{and}\:{BD}\:\mathrm{are}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$$$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{a}\right)\:{AD}.{BC}\:\geqslant\:{AB}.{CD}; \\ $$$$\left(\mathrm{b}\right)\:{AD}\:+\:{BC}\:\geqslant\:{AB}\:+\:{CD}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com