Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 178454 by SLVR last updated on 16/Oct/22

In a chess board number of unit squares  with 1)one vertex common?  2)2 vertices common??  3)2 sides common??

$${In}\:{a}\:{chess}\:{board}\:{number}\:{of}\:{unit}\:{squares} \\ $$$$\left.{with}\:\mathrm{1}\right){one}\:{vertex}\:{common}? \\ $$$$\left.\mathrm{2}\right)\mathrm{2}\:{vertices}\:{common}?? \\ $$$$\left.\mathrm{3}\right)\mathrm{2}\:{sides}\:{common}?? \\ $$

Answered by SLVR last updated on 16/Oct/22

kindly help me

$${kindly}\:{help}\:{me} \\ $$

Commented by mr W last updated on 16/Oct/22

nevertheless we can not answer a  question like “how many squares  on a chess board have a common  vertex?”. just think about it. it is not  clear what the question asks.

$${nevertheless}\:{we}\:{can}\:{not}\:{answer}\:{a} \\ $$$${question}\:{like}\:``{how}\:{many}\:{squares} \\ $$$${on}\:{a}\:{chess}\:{board}\:{have}\:{a}\:{common} \\ $$$${vertex}?''.\:{just}\:{think}\:{about}\:{it}.\:{it}\:{is}\:{not} \\ $$$${clear}\:{what}\:{the}\:{question}\:{asks}. \\ $$

Commented by mr W last updated on 16/Oct/22

i think your question is not clear.  at most 4 unit squares have a common  vertex. at most 2 unit squres have 2  common vertexex. at most 2 unit  squares have a common side.

$${i}\:{think}\:{your}\:{question}\:{is}\:{not}\:{clear}. \\ $$$${at}\:{most}\:\mathrm{4}\:{unit}\:{squares}\:{have}\:{a}\:{common} \\ $$$${vertex}.\:{at}\:{most}\:\mathrm{2}\:{unit}\:{squres}\:{have}\:\mathrm{2} \\ $$$${common}\:{vertexex}.\:{at}\:{most}\:\mathrm{2}\:{unit} \\ $$$${squares}\:{have}\:{a}\:{common}\:{side}. \\ $$

Commented by SLVR last updated on 16/Oct/22

Sir..it is my luck ..you are answering  ....it is not unit squares..  but sqares of any size..typo..  kidly forgive?my mistake..

$${Sir}..{it}\:{is}\:{my}\:{luck}\:..{you}\:{are}\:{answering} \\ $$$$....{it}\:{is}\:{not}\:{unit}\:{squares}.. \\ $$$${but}\:{sqares}\:{of}\:{any}\:{size}..{typo}.. \\ $$$${kidly}\:{forgive}?{my}\:{mistake}.. \\ $$

Answered by Acem last updated on 16/Oct/22

1) One vertex common: on four board edges   Each vertex is formed of 2 squares   Num_(1 ver.com) = (n−1)×4_(edge) = 28 vertices ;n=8   if you want number of squares multiply by 2    2) Vertices common: inside board   Each vertex is formed of 4 squares   Num_(vertices com) = (n−1)^2 = 49 vertices_(of each 4 squ.)      3) Sides common: inside board   Each side is formed of 2 squares   Num_(sides com) = 2n(n−1)= 112 sides_(of each 2 squ.)

$$\left.\mathrm{1}\right)\:{One}\:{vertex}\:{common}:\:{on}\:{four}\:{board}\:{edges} \\ $$$$\:{Each}\:{vertex}\:{is}\:{formed}\:{of}\:\mathrm{2}\:{squares} \\ $$$$\:{Num}_{\mathrm{1}\:{ver}.{com}} =\:\left({n}−\mathrm{1}\right)×\mathrm{4}_{{edge}} =\:\mathrm{28}\:\boldsymbol{{vertices}}\:;{n}=\mathrm{8} \\ $$$$\:{if}\:{you}\:{want}\:{number}\:{of}\:{squares}\:{multiply}\:{by}\:\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{Vertices}\:{common}:\:{inside}\:{board} \\ $$$$\:{Each}\:{vertex}\:{is}\:{formed}\:{of}\:\mathrm{4}\:{squares} \\ $$$$\:{Num}_{{vertices}\:{com}} =\:\left({n}−\mathrm{1}\right)^{\mathrm{2}} =\:\mathrm{49}\:\boldsymbol{{vertices}}_{{of}\:{each}\:\mathrm{4}\:{squ}.} \\ $$$$\: \\ $$$$\left.\mathrm{3}\right)\:{Sides}\:{common}:\:{inside}\:{board} \\ $$$$\:{Each}\:{side}\:{is}\:{formed}\:{of}\:\mathrm{2}\:{squares} \\ $$$$\:{Num}_{{sides}\:{com}} =\:\mathrm{2}{n}\left({n}−\mathrm{1}\right)=\:\mathrm{112}\:\boldsymbol{{sides}}_{{of}\:{each}\:\mathrm{2}\:{squ}.} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com