Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 20925 by dk3029943@gmail.com last updated on 08/Sep/17

In a △ABC, if a=2, b=60° and c=75°,  then b =

$$\mathrm{In}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{if}\:{a}=\mathrm{2},\:{b}=\mathrm{60}°\:\mathrm{and}\:{c}=\mathrm{75}°, \\ $$$$\mathrm{then}\:{b}\:= \\ $$

Answered by Joel577 last updated on 08/Sep/17

∠A = 180° − (60° + 75°) = 45°    (a/(sin A)) = (b/(sin B))  (2/(sin 45°)) = (b/(sin 60°))  b = ((2 . ((√3)/2))/((√2)/2)) = ((2(√3))/(√2)) . ((√2)/(√2)) = (√6)

$$\angle{A}\:=\:\mathrm{180}°\:−\:\left(\mathrm{60}°\:+\:\mathrm{75}°\right)\:=\:\mathrm{45}° \\ $$$$ \\ $$$$\frac{{a}}{\mathrm{sin}\:{A}}\:=\:\frac{{b}}{\mathrm{sin}\:{B}} \\ $$$$\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{45}°}\:=\:\frac{{b}}{\mathrm{sin}\:\mathrm{60}°} \\ $$$${b}\:=\:\frac{\mathrm{2}\:.\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}}\:.\:\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}}\:=\:\sqrt{\mathrm{6}} \\ $$

Answered by $@ty@m last updated on 08/Sep/17

B=60^o , C=75^(o ) ⇒A=45^o   Applying sine formula,  (a/(sinA))=(b/(sinB))  ⇒(2/(sin45^o ))=(b/(sin60^o ))  ⇒(2/(1/(√2)))=(b/((√3)/2))  ⇒b=(√6)  Ans.

$${B}=\mathrm{60}^{{o}} ,\:{C}=\mathrm{75}^{{o}\:} \Rightarrow{A}=\mathrm{45}^{{o}} \\ $$$${Applying}\:{sine}\:{formula}, \\ $$$$\frac{{a}}{{sinA}}=\frac{{b}}{{sinB}} \\ $$$$\Rightarrow\frac{\mathrm{2}}{{sin}\mathrm{45}^{{o}} }=\frac{{b}}{{sin}\mathrm{60}^{{o}} } \\ $$$$\Rightarrow\frac{\mathrm{2}}{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}=\frac{{b}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$$$\Rightarrow{b}=\sqrt{\mathrm{6}}\:\:{Ans}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com