Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 41332 by rahul 19 last updated on 05/Aug/18

In Matrices,   Is (A^(−1) )B = B(A^(−1) ) ?

$$\mathrm{In}\:\mathrm{Matrices},\: \\ $$$$\mathrm{Is}\:\left(\mathrm{A}^{−\mathrm{1}} \right)\mathrm{B}\:=\:\mathrm{B}\left(\mathrm{A}^{−\mathrm{1}} \right)\:? \\ $$

Commented by rahul 19 last updated on 06/Aug/18

ok prof .

$$\mathrm{ok}\:\mathrm{prof}\:. \\ $$

Commented by candre last updated on 06/Aug/18

 determinant ((1),(2)) determinant ((1,2))= determinant ((1),(2))   determinant ((1,2)) determinant ((1),(2))= determinant ((3))  also AB existing don′t even imply BA exist  so, in general AB≠BA  But it not necessary mean that there no values  such AB=BA, for squares matrizes  IA=AI  where I is indenty matriz

$$\begin{vmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{vmatrix}\begin{vmatrix}{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}=\begin{vmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{vmatrix} \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}\begin{vmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{vmatrix}=\begin{vmatrix}{\mathrm{3}}\end{vmatrix} \\ $$$$\mathrm{also}\:\mathrm{AB}\:{existing}\:{don}'{t}\:{even}\:{imply}\:{BA}\:{exist} \\ $$$$\mathrm{so},\:\mathrm{in}\:\mathrm{general}\:\mathrm{A}{B}\neq{BA} \\ $$$${But}\:{it}\:{not}\:{necessary}\:{mean}\:{that}\:{there}\:{no}\:{values} \\ $$$${such}\:{AB}={BA},\:{for}\:{squares}\:{matrizes} \\ $$$${IA}={AI} \\ $$$${where}\:{I}\:{is}\:{indenty}\:{matriz} \\ $$

Commented by maxmathsup by imad last updated on 05/Aug/18

generally  two matrice dont commute means A.B≠B.A so  genarally A^(−1) .B≠B.A^(−1)

$${generally}\:\:{two}\:{matrice}\:{dont}\:{commute}\:{means}\:{A}.{B}\neq{B}.{A}\:{so} \\ $$$${genarally}\:{A}^{−\mathrm{1}} .{B}\neq{B}.{A}^{−\mathrm{1}} \\ $$

Answered by candre last updated on 05/Aug/18

no, matriz multiplication don′t commute in general.

$$\mathrm{no},\:\mathrm{matriz}\:\mathrm{multiplication}\:\mathrm{don}'\mathrm{t}\:\mathrm{commute}\:\mathrm{in}\:\mathrm{general}. \\ $$

Commented by rahul 19 last updated on 05/Aug/18

ok sir.

$$\mathrm{ok}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com