Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176365 by Shrinava last updated on 16/Sep/22

In  △ABC  the following relationship holds:  Σ_(cyc)  (a^2 /(b^2  + c^2 )) + 4 Π_(cyc)  cos A ≤ 2

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship}\:\mathrm{holds}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} }\:+\:\mathrm{4}\:\underset{\boldsymbol{\mathrm{cyc}}} {\prod}\:\mathrm{cos}\:\mathrm{A}\:\leqslant\:\mathrm{2} \\ $$

Answered by behi834171 last updated on 17/Sep/22

(a^2 /(b^2 +c^2 ))=((b^2 +c^2 −2bc.cosA)/(b^2 +c^2 ))=  =1−((2bc)/(b^2 +c^2 )).cosA≤1  ΠcosA≤((1/2))^3 =(1/8)  ⇒lhs=3−Σ((2bc)/(b^2 +c^2 )).cosA+4ΠcosA≤  ≤3−3×1+4×(1/8)=(1/2)<<2

$$\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{bc}.{cosA}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }= \\ $$$$=\mathrm{1}−\frac{\mathrm{2}{bc}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }.{cosA}\leqslant\mathrm{1} \\ $$$$\Pi{cosA}\leqslant\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow{lhs}=\mathrm{3}−\Sigma\frac{\mathrm{2}{bc}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }.{cosA}+\mathrm{4}\Pi{cosA}\leqslant \\ $$$$\leqslant\mathrm{3}−\mathrm{3}×\mathrm{1}+\mathrm{4}×\frac{\mathrm{1}}{\mathrm{8}}=\frac{\mathrm{1}}{\mathrm{2}}<<\mathrm{2} \\ $$

Commented by Shrinava last updated on 18/Sep/22

cool dera professor thank you

$$\mathrm{cool}\:\mathrm{dera}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com