Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 106666 by deep last updated on 06/Aug/20

In 2x+3y=8 and  5x+Ky=3, find the  value of K so that the given system  of equation has infinte solution.

$$\mathrm{In}\:\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{8}\:\mathrm{and}\:\:\mathrm{5}{x}+{Ky}=\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:{K}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{given}\:\mathrm{system} \\ $$$$\mathrm{of}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{infinte}\:\mathrm{solution}. \\ $$

Commented by bemath last updated on 06/Aug/20

 (((2      3)),((5      k)) )  ((x),(y) ) =  ((8),(3) )  has no solution if Δ = 0   ⇒2k−15 = 0 , k = ((15)/2)

$$\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{5}\:\:\:\:\:\:\mathrm{k}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{if}\:\Delta\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\mathrm{2k}−\mathrm{15}\:=\:\mathrm{0}\:,\:\mathrm{k}\:=\:\frac{\mathrm{15}}{\mathrm{2}} \\ $$

Commented by Her_Majesty last updated on 06/Aug/20

yes but “infinite solutions” doesn′t mean  “no solution”

$${yes}\:{but}\:``{infinite}\:{solutions}''\:{doesn}'{t}\:{mean} \\ $$$$``{no}\:{solution}'' \\ $$

Answered by nimnim last updated on 06/Aug/20

The equations will have infinite solution if  (a_1 /a_2 )=(b_1 /b_2 )=(c_1 /c_2 )   i.e (2/5)=(3/k)=(8/3)⇒1=(5/3)×(3/k)×(3/8)=1  ⇒1=((15)/(8k))=1⇒k=((15)/8)

$${The}\:{equations}\:{will}\:{have}\:{infinite}\:{solution}\:{if} \\ $$$$\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }=\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} }=\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} }\:\:\:{i}.{e}\:\frac{\mathrm{2}}{\mathrm{5}}=\frac{\mathrm{3}}{{k}}=\frac{\mathrm{8}}{\mathrm{3}}\Rightarrow\mathrm{1}=\frac{\mathrm{5}}{\mathrm{3}}×\frac{\mathrm{3}}{{k}}×\frac{\mathrm{3}}{\mathrm{8}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}=\frac{\mathrm{15}}{\mathrm{8}{k}}=\mathrm{1}\Rightarrow{k}=\frac{\mathrm{15}}{\mathrm{8}} \\ $$

Commented by Her_Majesty last updated on 06/Aug/20

wrong. with k=((15)/8) we get x=−(8/(15))∧y=((136)/(45))  which is a unique solution

$${wrong}.\:{with}\:{k}=\frac{\mathrm{15}}{\mathrm{8}}\:{we}\:{get}\:{x}=−\frac{\mathrm{8}}{\mathrm{15}}\wedge{y}=\frac{\mathrm{136}}{\mathrm{45}} \\ $$$${which}\:{is}\:{a}\:{unique}\:{solution} \\ $$

Answered by Her_Majesty last updated on 06/Aug/20

 { ((2x+3y=8)),((5x+Ky=3)) :} ⇔  { ((y=−(2/3)x+(8/3))),((y=−(5/k)x+(3/k))) :}  both are linear ⇒ infinite solutions if  (I) = (II) which is impossible if K∈C:  >  −(2/3)=−(5/K)∧(8/3)=(3/K)  K=((15)/2)∧K=(9/8) which is impossible  if K is not a number  −(2/3)x+(8/3)=−(5/K)x+(3/K)  ⇒  K=((3(5x−3))/(2(x−4)))  ⇒   { ((y=−(2/3)x+(8/3))),((y=−(2/3)x+(8/3))) :}

$$\begin{cases}{\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{8}}\\{\mathrm{5}{x}+{Ky}=\mathrm{3}}\end{cases}\:\Leftrightarrow\:\begin{cases}{{y}=−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}}\\{{y}=−\frac{\mathrm{5}}{{k}}{x}+\frac{\mathrm{3}}{{k}}}\end{cases} \\ $$$${both}\:{are}\:{linear}\:\Rightarrow\:{infinite}\:{solutions}\:{if} \\ $$$$\left({I}\right)\:=\:\left({II}\right)\:{which}\:{is}\:{impossible}\:{if}\:{K}\in\mathbb{C}: \\ $$$$> \\ $$$$−\frac{\mathrm{2}}{\mathrm{3}}=−\frac{\mathrm{5}}{{K}}\wedge\frac{\mathrm{8}}{\mathrm{3}}=\frac{\mathrm{3}}{{K}} \\ $$$${K}=\frac{\mathrm{15}}{\mathrm{2}}\wedge{K}=\frac{\mathrm{9}}{\mathrm{8}}\:{which}\:{is}\:{impossible} \\ $$$${if}\:{K}\:{is}\:{not}\:{a}\:{number} \\ $$$$−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}=−\frac{\mathrm{5}}{{K}}{x}+\frac{\mathrm{3}}{{K}} \\ $$$$\Rightarrow \\ $$$${K}=\frac{\mathrm{3}\left(\mathrm{5}{x}−\mathrm{3}\right)}{\mathrm{2}\left({x}−\mathrm{4}\right)} \\ $$$$\Rightarrow \\ $$$$\begin{cases}{{y}=−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}}\\{{y}=−\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\mathrm{8}}{\mathrm{3}}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com