Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 111850 by bemath last updated on 05/Sep/20

If ∣z∣ = 3 , what is the maximum  and minimum value of ∣z−1+i(√3) ∣ ?

$${If}\:\mid{z}\mid\:=\:\mathrm{3}\:,\:{what}\:{is}\:{the}\:{maximum} \\ $$$${and}\:{minimum}\:{value}\:{of}\:\mid{z}−\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\mid\:? \\ $$

Answered by ajfour last updated on 05/Sep/20

max∣z−1+i(√3)∣=5  min∣z−1+i(√3)∣=1

$${max}\mid{z}−\mathrm{1}+{i}\sqrt{\mathrm{3}}\mid=\mathrm{5} \\ $$$${min}\mid{z}−\mathrm{1}+{i}\sqrt{\mathrm{3}}\mid=\mathrm{1} \\ $$

Commented by ajfour last updated on 05/Sep/20

Answered by Her_Majesty last updated on 05/Sep/20

∣z∣=3 ⇒ z=3cos θ +3i sin θ  it′s a circle with radius 3  −1+i(√3)=2cos ((2π)/3) +2i sin ((2π)/3)  max ∣z−1+i(√3)∣=5  min ∣z−1+i(√3)∣=1

$$\mid{z}\mid=\mathrm{3}\:\Rightarrow\:{z}=\mathrm{3cos}\:\theta\:+\mathrm{3i}\:\mathrm{sin}\:\theta \\ $$$${it}'{s}\:{a}\:{circle}\:{with}\:{radius}\:\mathrm{3} \\ $$$$−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}=\mathrm{2}{cos}\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:+\mathrm{2i}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${max}\:\mid{z}−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\mid=\mathrm{5} \\ $$$${min}\:\mid{z}−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\mid=\mathrm{1} \\ $$

Answered by bemath last updated on 05/Sep/20

great santuy  both ....

$${great}\:{santuy}\:\:{both}\:.... \\ $$

Answered by 1549442205PVT last updated on 05/Sep/20

Put z=a+bi⇒z−1+i(√3)=(a−1)+i(b+(√3))  ∣z∣=3⇔(√(a^2 +b^2 )) =3⇔a^2 +b^2 =9(1)  ∣z−1+i(√3)∣=(√((a−1)^2 +(b+(√3))^2 ))  We need find least and greaest value  of the expression   P=(√((a−1)^2 +(b+(√3))^2 )) which is   equivalent to find least and greaest  value of  Q=(a−1)^2 +(b+(√3))^2   =13+2b(√3)−a(2)  Apply the inequality ∣ax+by∣≤  (√((a^2 +b^2 )(x^2 +y^2 ))) we have  ∣2b(√3)−a∣=∣(2(√3)).b+(−2).a∣≤  (√([(2(√3))^2 +(−2)^2 ](a^2 +b^2 ))) =(√(16.9))=12  ⇒−12≤2b(√3)−2a≤12   (3)  From (2)and (3) we get  1≤Q≤25⇔1≤P≤5  P=1⇔Q=1⇔ { ((a=3/2)),((b=−3(√3)/2)) :}  P=5⇔Q=25⇔ { ((a=−3/2)),((b=3(√3)/2)) :}  Thus,P=∣z−1+i(√3) ∣   has the smallest  value equal to 1 when (a,b)=((3/2),((−3(√3))/2))  i.e when z=(3/2)−((3i(√3))/2)  and the greatest value equal to 5  when (a,b)=(((−3)/2),((3(√3))/2)) i.e z=((−3)/2)+((3i(√3))/2)

$$\mathrm{Put}\:\mathrm{z}=\mathrm{a}+\mathrm{bi}\Rightarrow\mathrm{z}−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}=\left(\mathrm{a}−\mathrm{1}\right)+\mathrm{i}\left(\mathrm{b}+\sqrt{\mathrm{3}}\right) \\ $$$$\mid\mathrm{z}\mid=\mathrm{3}\Leftrightarrow\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\:=\mathrm{3}\Leftrightarrow\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{9}\left(\mathrm{1}\right) \\ $$$$\mid\mathrm{z}−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\mid=\sqrt{\left(\mathrm{a}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{b}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{find}\:\mathrm{least}\:\mathrm{and}\:\mathrm{greaest}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{expression}\: \\ $$$$\mathrm{P}=\sqrt{\left(\mathrm{a}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{b}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:\mathrm{which}\:\mathrm{is}\: \\ $$$$\mathrm{equivalent}\:\mathrm{to}\:\mathrm{find}\:\mathrm{least}\:\mathrm{and}\:\mathrm{greaest} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\mathrm{Q}=\left(\mathrm{a}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{b}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{13}+\mathrm{2}\boldsymbol{\mathrm{b}}\sqrt{\mathrm{3}}−\boldsymbol{\mathrm{a}}\left(\mathrm{2}\right) \\ $$$$\mathrm{Apply}\:\mathrm{the}\:\mathrm{inequality}\:\mid\mathrm{ax}+\mathrm{by}\mid\leqslant \\ $$$$\sqrt{\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mid\mathrm{2b}\sqrt{\mathrm{3}}−\mathrm{a}\mid=\mid\left(\mathrm{2}\sqrt{\mathrm{3}}\right).\mathrm{b}+\left(−\mathrm{2}\right).\mathrm{a}\mid\leqslant \\ $$$$\sqrt{\left[\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\left(−\mathrm{2}\right)^{\mathrm{2}} \right]\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)}\:=\sqrt{\mathrm{16}.\mathrm{9}}=\mathrm{12} \\ $$$$\Rightarrow−\mathrm{12}\leqslant\mathrm{2b}\sqrt{\mathrm{3}}−\mathrm{2a}\leqslant\mathrm{12}\:\:\:\left(\mathrm{3}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{2}\right)\mathrm{and}\:\left(\mathrm{3}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{1}\leqslant\mathrm{Q}\leqslant\mathrm{25}\Leftrightarrow\mathrm{1}\leqslant\mathrm{P}\leqslant\mathrm{5} \\ $$$$\mathrm{P}=\mathrm{1}\Leftrightarrow\mathrm{Q}=\mathrm{1}\Leftrightarrow\begin{cases}{\mathrm{a}=\mathrm{3}/\mathrm{2}}\\{\mathrm{b}=−\mathrm{3}\sqrt{\mathrm{3}}/\mathrm{2}}\end{cases} \\ $$$$\mathrm{P}=\mathrm{5}\Leftrightarrow\mathrm{Q}=\mathrm{25}\Leftrightarrow\begin{cases}{\mathrm{a}=−\mathrm{3}/\mathrm{2}}\\{\mathrm{b}=\mathrm{3}\sqrt{\mathrm{3}}/\mathrm{2}}\end{cases} \\ $$$$\mathrm{Thus},\mathrm{P}=\mid\mathrm{z}−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\:\mid\:\:\:\mathrm{has}\:\mathrm{the}\:\mathrm{smallest} \\ $$$$\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{equal}}\:\boldsymbol{\mathrm{to}}\:\mathrm{1}\:\boldsymbol{\mathrm{when}}\:\left(\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\right)=\left(\frac{\mathrm{3}}{\mathrm{2}},\frac{−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{when}\:\mathrm{z}=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{3i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{greatest}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{equal}}\:\boldsymbol{\mathrm{to}}\:\mathrm{5} \\ $$$$\mathrm{when}\:\left(\mathrm{a},\mathrm{b}\right)=\left(\frac{−\mathrm{3}}{\mathrm{2}},\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:\mathrm{i}.\mathrm{e}\:\mathrm{z}=\frac{−\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{3i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com