Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49174 by rahul 19 last updated on 04/Dec/18

If z_1 ,z_2  and z_3 ,z_(4 ) are two pairs of   conjugate complex numbers , then   find value of arg((z_1 /z_4 ))+arg((z_2 /z_3 )) ?

$${If}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} \:{and}\:{z}_{\mathrm{3}} ,{z}_{\mathrm{4}\:} {are}\:{two}\:{pairs}\:{of}\: \\ $$$${conjugate}\:{complex}\:{numbers}\:,\:{then}\: \\ $$$${find}\:{value}\:{of}\:{arg}\left(\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{4}} }\right)+{arg}\left(\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{3}} }\right)\:? \\ $$

Commented by rahul 19 last updated on 04/Dec/18

arg(((z_1 z_2 )/(z_4 z_3 )))= arg(((∣z_1 ∣^2 )/(∣z_3 ∣^2 )))=0  (∵ z_2 =z_1 ^_  ⇒z_1 z_2 = ∣z_1 ∣^(2 )  and z_3 z_4 = ∣z_3 ∣^2 )

$${arg}\left(\frac{{z}_{\mathrm{1}} {z}_{\mathrm{2}} }{{z}_{\mathrm{4}} {z}_{\mathrm{3}} }\right)=\:{arg}\left(\frac{\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} }{\mid{z}_{\mathrm{3}} \mid^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$\left(\because\:{z}_{\mathrm{2}} =\overset{\_} {{z}}_{\mathrm{1}} \:\Rightarrow{z}_{\mathrm{1}} {z}_{\mathrm{2}} =\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}\:} \:{and}\:{z}_{\mathrm{3}} {z}_{\mathrm{4}} =\:\mid{z}_{\mathrm{3}} \mid^{\mathrm{2}} \right) \\ $$

Answered by MJS last updated on 04/Dec/18

z_1 =pe^(iα)   z_2 =pe^(−iα)   z_3 =qe^(iβ)   z_4 =qe^(−iβ)   z_5 =(z_1 /z_4 )=(p/q)e^(i(α+β))   z_6 =(z_2 /z_3 )=(p/q)e^(−i(α+β))   arg(z_5 )+arg(z_6 )=0

$${z}_{\mathrm{1}} ={p}\mathrm{e}^{\mathrm{i}\alpha} \\ $$$${z}_{\mathrm{2}} ={p}\mathrm{e}^{−\mathrm{i}\alpha} \\ $$$${z}_{\mathrm{3}} ={q}\mathrm{e}^{\mathrm{i}\beta} \\ $$$${z}_{\mathrm{4}} ={q}\mathrm{e}^{−\mathrm{i}\beta} \\ $$$${z}_{\mathrm{5}} =\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{4}} }=\frac{{p}}{{q}}\mathrm{e}^{\mathrm{i}\left(\alpha+\beta\right)} \\ $$$${z}_{\mathrm{6}} =\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{3}} }=\frac{{p}}{{q}}\mathrm{e}^{−\mathrm{i}\left(\alpha+\beta\right)} \\ $$$$\mathrm{arg}\left({z}_{\mathrm{5}} \right)+\mathrm{arg}\left({z}_{\mathrm{6}} \right)=\mathrm{0} \\ $$

Commented by rahul 19 last updated on 04/Dec/18

thank you sir!����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com