Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139838 by EnterUsername last updated on 01/May/21

If z_1 , z_2  and z_3  are the vertices of a right-angled isos-  celes triangle described in counter clock sense and  right angled at z_3 , then (z_1 −z_2 )^2  is equal to   (A) (z_1 −z_3 )(z_3 −z_2 )                    (B) 2(z_1 −z_3 )(z_3 −z_2 )  (C) 3(z_1 −z_3 )(z_3 −z_2 )                  (D) 3(z_3 −z_1 )(z_3 −z_2 )

$$\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}-\mathrm{angled}\:\mathrm{isos}- \\ $$$$\mathrm{celes}\:\mathrm{triangle}\:\mathrm{described}\:\mathrm{in}\:\mathrm{counter}\:\mathrm{clock}\:\mathrm{sense}\:\mathrm{and} \\ $$$$\mathrm{right}\:\mathrm{angled}\:\mathrm{at}\:{z}_{\mathrm{3}} ,\:\mathrm{then}\:\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{2}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\: \\ $$$$\left(\mathrm{A}\right)\:\left({z}_{\mathrm{1}} −{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{2}\left({z}_{\mathrm{1}} −{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right) \\ $$$$\left(\mathrm{C}\right)\:\mathrm{3}\left({z}_{\mathrm{1}} −{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{3}\left({z}_{\mathrm{3}} −{z}_{\mathrm{1}} \right)\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right) \\ $$

Answered by mr W last updated on 02/May/21

Commented by mr W last updated on 02/May/21

let z_1 −z_3 =re^(θi)   ⇒z_3 −z_2 =re^((θ−(π/2))i)   ⇒z_1 −z_2 =(√2)re^((θ−(π/4))i)   (z_1 −z_2 )^2 =2r^2 e^((2θ−(π/2))i)                      =2re^(θi) re^((θ−(π/2))i)                      =2(z_1 −z_3 )(z_3 −z_2 )  ⇒answer (B)

$${let}\:{z}_{\mathrm{1}} −{z}_{\mathrm{3}} ={re}^{\theta{i}} \\ $$$$\Rightarrow{z}_{\mathrm{3}} −{z}_{\mathrm{2}} ={re}^{\left(\theta−\frac{\pi}{\mathrm{2}}\right){i}} \\ $$$$\Rightarrow{z}_{\mathrm{1}} −{z}_{\mathrm{2}} =\sqrt{\mathrm{2}}{re}^{\left(\theta−\frac{\pi}{\mathrm{4}}\right){i}} \\ $$$$\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{2}{r}^{\mathrm{2}} {e}^{\left(\mathrm{2}\theta−\frac{\pi}{\mathrm{2}}\right){i}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{re}^{\theta{i}} {re}^{\left(\theta−\frac{\pi}{\mathrm{2}}\right){i}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left({z}_{\mathrm{1}} −{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right) \\ $$$$\Rightarrow{answer}\:\left({B}\right) \\ $$

Commented by EnterUsername last updated on 02/May/21

Thank You, Sir

$$\mathrm{Thank}\:\mathrm{You},\:\mathrm{Sir} \\ $$

Commented by EnterUsername last updated on 02/May/21

Please Sir, how did you get the angle between z_1 −z_2  and  the horizontal axes origin to be θ−(π/4) ? I′m not able to   easily notice that.

$$\mathrm{Please}\:\mathrm{Sir},\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{horizontal}\:\mathrm{axes}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{be}\:\theta−\frac{\pi}{\mathrm{4}}\:?\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{able}\:\mathrm{to} \\ $$$$\:\mathrm{easily}\:\mathrm{notice}\:\mathrm{that}. \\ $$

Commented by mr W last updated on 02/May/21

Commented by EnterUsername last updated on 02/May/21

Oh wow ! Thanks a lot.

$$\mathrm{Oh}\:\mathrm{wow}\:!\:\mathrm{Thanks}\:\mathrm{a}\:\mathrm{lot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com