Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139192 by EnterUsername last updated on 23/Apr/21

If z_(1 )  and z_2  are complex nth roots of unity which sub-  tend right angle at the origin, then n must be of the form  (A) 4K+1                   (B) 4K+2  (C) 4K+3                   (D) 4K

$$\mathrm{If}\:{z}_{\mathrm{1}\:} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{complex}\:{n}\mathrm{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{which}\:\mathrm{sub}- \\ $$$$\mathrm{tend}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{at}\:\mathrm{the}\:\mathrm{origin},\:\mathrm{then}\:{n}\:\mathrm{must}\:\mathrm{be}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{4K}+\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{4K}+\mathrm{2} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{4K}+\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4K} \\ $$

Answered by mr W last updated on 24/Apr/21

((2π)/n)×k=(π/2)  ⇒n=4k

$$\frac{\mathrm{2}\pi}{{n}}×{k}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow{n}=\mathrm{4}{k} \\ $$

Commented by EnterUsername last updated on 24/Apr/21

OK thanks!

$$\mathrm{OK}\:\mathrm{thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com