Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 76714 by peter frank last updated on 29/Dec/19

If y=(√(tan x+(√(tan x+(√(tan x+....∞))))))   prove that  (dy/dx)=((sec^2 x)/(2y−1))

$${If}\:{y}=\sqrt{\mathrm{tan}\:{x}+\sqrt{\mathrm{tan}\:{x}+\sqrt{\mathrm{tan}\:{x}+....\infty}}}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{sec}\:^{\mathrm{2}} {x}}{\mathrm{2}{y}−\mathrm{1}} \\ $$

Answered by mind is power last updated on 29/Dec/19

y^2 =y+tan(x)  ⇒y^2 −y−tan(x)=0  ⇒2(dy/dx)y−(dy/dx)−sec^2 (x)=0  ⇒(dy/dx)(2y−1)=sec^2 (x)⇒(dy/dx)=((sec^2 (x))/(2y−1))

$$\mathrm{y}^{\mathrm{2}} =\mathrm{y}+\mathrm{tan}\left(\mathrm{x}\right) \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{y}−\mathrm{tan}\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{y}−\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{sec}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{2y}−\mathrm{1}\right)=\mathrm{sec}^{\mathrm{2}} \left(\mathrm{x}\right)\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{sec}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{2y}−\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$

Commented by peter frank last updated on 30/Dec/19

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com