Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 196683 by MATHEMATICSAM last updated on 29/Aug/23

If y = ((e^x  − e^(− x) )/(e^x  + e^(− x) )) then show that  x = (1/2)log_e (((1 + y)/(1 − y))).

$$\mathrm{If}\:{y}\:=\:\frac{{e}^{{x}} \:−\:{e}^{−\:{x}} }{{e}^{{x}} \:+\:{e}^{−\:{x}} }\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}_{{e}} \left(\frac{\mathrm{1}\:+\:{y}}{\mathrm{1}\:−\:{y}}\right). \\ $$

Answered by Frix last updated on 29/Aug/23

y=((e^(2x) −1)/(e^(2x) +1))  e^(2x) =((1+y)/(1−y))  2x=ln ((1+y)/(1−y))  x=(1/2)ln ((1+y)/(1−y))

$${y}=\frac{\mathrm{e}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{e}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$$$\mathrm{e}^{\mathrm{2}{x}} =\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$$$\mathrm{2}{x}=\mathrm{ln}\:\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$

Answered by som(math1967) last updated on 29/Aug/23

 (1/y)=((e^x +(1/e^x ))/(e^x −(1/e^x )))  ⇒((1+y)/(1−y))=((2e^x )/(2/e^x ))  ⇒((1+y)/(1−y))=e^(2x)   ⇒log_e (((1+y)/(1−y)))=log_e e^(2x)   ∴2x=log_e (((1+y)/(1−y)))   x=(1/2)log_e (((1+y)/(1−y)))

$$\:\frac{\mathrm{1}}{{y}}=\frac{{e}^{{x}} +\frac{\mathrm{1}}{{e}^{{x}} }}{{e}^{{x}} −\frac{\mathrm{1}}{{e}^{{x}} }} \\ $$$$\Rightarrow\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}=\frac{\mathrm{2}{e}^{{x}} }{\frac{\mathrm{2}}{{e}^{{x}} }} \\ $$$$\Rightarrow\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}={e}^{\mathrm{2}{x}} \\ $$$$\Rightarrow{log}_{{e}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right)={log}_{{e}} {e}^{\mathrm{2}{x}} \\ $$$$\therefore\mathrm{2}{x}={log}_{{e}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right) \\ $$$$\:{x}=\frac{\mathrm{1}}{\mathrm{2}}{log}_{{e}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com