Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 32110 by pieroo last updated on 19/Mar/18

If y=1+x^2 +x^3  and x=1+α, where α is small, show  that y≈3+5α. Hence, find the increase in y when  x is increased from 1 to 1.02

$$\mathrm{If}\:\mathrm{y}=\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} \:\mathrm{and}\:\mathrm{x}=\mathrm{1}+\alpha,\:\mathrm{where}\:\alpha\:\mathrm{is}\:\mathrm{small},\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{y}\approx\mathrm{3}+\mathrm{5}\alpha.\:\mathrm{Hence},\:\mathrm{find}\:\mathrm{the}\:\mathrm{increase}\:\mathrm{in}\:\mathrm{y}\:\mathrm{when} \\ $$$$\mathrm{x}\:\mathrm{is}\:\mathrm{increased}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{1}.\mathrm{02} \\ $$

Answered by mrW2 last updated on 19/Mar/18

y=1+x^2 +x^3 =1+(1+α)^2 +(1+α)^3   =1+1+2α+α^2 +1+3α+3a^2 +α^3   =3+5α+4α^2 +α^3   ≈3+5α  y(1.02)≈3+5×0.02=3.1  y(1)=3  Δy≈3.1−3=0.1

$${y}=\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{1}+\left(\mathrm{1}+\alpha\right)^{\mathrm{2}} +\left(\mathrm{1}+\alpha\right)^{\mathrm{3}} \\ $$$$=\mathrm{1}+\mathrm{1}+\mathrm{2}\alpha+\alpha^{\mathrm{2}} +\mathrm{1}+\mathrm{3}\alpha+\mathrm{3}{a}^{\mathrm{2}} +\alpha^{\mathrm{3}} \\ $$$$=\mathrm{3}+\mathrm{5}\alpha+\mathrm{4}\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} \\ $$$$\approx\mathrm{3}+\mathrm{5}\alpha \\ $$$${y}\left(\mathrm{1}.\mathrm{02}\right)\approx\mathrm{3}+\mathrm{5}×\mathrm{0}.\mathrm{02}=\mathrm{3}.\mathrm{1} \\ $$$${y}\left(\mathrm{1}\right)=\mathrm{3} \\ $$$$\Delta{y}\approx\mathrm{3}.\mathrm{1}−\mathrm{3}=\mathrm{0}.\mathrm{1} \\ $$

Commented by pieroo last updated on 19/Mar/18

thanks Sir

$$\mathrm{thanks}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com