Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 207109 by MATHEMATICSAM last updated on 06/May/24

If y = (1 + x)(1 + x^2 )(1 + x^4 ) .... (1 + x^(2n) )  then find (dy/dx) at x = 0.

$$\mathrm{If}\:{y}\:=\:\left(\mathrm{1}\:+\:{x}\right)\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\left(\mathrm{1}\:+\:{x}^{\mathrm{4}} \right)\:....\:\left(\mathrm{1}\:+\:{x}^{\mathrm{2}{n}} \right) \\ $$$$\mathrm{then}\:\mathrm{find}\:\frac{{dy}}{{dx}}\:\mathrm{at}\:{x}\:=\:\mathrm{0}. \\ $$

Answered by Berbere last updated on 06/May/24

y(x)=(1+x)Π_(k=1) ^n (1+x^(2k) )  ((y′)/y)=(1/(1+x))+Σ_(k=1) ^n ((2kx^(2k−1) )/(1+x^(2k) ))∣_(x=0)   ((y′(0))/(y(0)))=1⇒y′(0)=y(0)=1

$${y}\left({x}\right)=\left(\mathrm{1}+{x}\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+{x}^{\mathrm{2}{k}} \right) \\ $$$$\frac{{y}'}{{y}}=\frac{\mathrm{1}}{\mathrm{1}+{x}}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}{kx}^{\mathrm{2}{k}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}{k}} }\mid_{{x}=\mathrm{0}} \\ $$$$\frac{{y}'\left(\mathrm{0}\right)}{{y}\left(\mathrm{0}\right)}=\mathrm{1}\Rightarrow{y}'\left(\mathrm{0}\right)={y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$

Answered by mr W last updated on 06/May/24

y=(((1−x)(1+x)(1+x^2 )(1+x^4 )...(1+x^(2n) ))/((1−x)))  y=(((1−x^2 )(1+x^2 )(1+x^4 )...(1+x^(2n) ))/((1−x)))  ...  y=((1−x^(4n) )/(1−x))  y=1+x+x^2 +x^3 +x^4 +...+x^(4n−1)   y′=1+2x+3x^2 +4x^3 +...+(4n−1)x^(4n−2)   y′(0)=1  y′(1)=1+2+3+4+...+(4n−1)=2n(4n−1)

$${y}=\frac{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}{n}} \right)}{\left(\mathrm{1}−{x}\right)} \\ $$$${y}=\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}{n}} \right)}{\left(\mathrm{1}−{x}\right)} \\ $$$$... \\ $$$${y}=\frac{\mathrm{1}−{x}^{\mathrm{4}{n}} }{\mathrm{1}−{x}} \\ $$$${y}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +...+{x}^{\mathrm{4}{n}−\mathrm{1}} \\ $$$${y}'=\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +...+\left(\mathrm{4}{n}−\mathrm{1}\right){x}^{\mathrm{4}{n}−\mathrm{2}} \\ $$$${y}'\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${y}'\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+...+\left(\mathrm{4}{n}−\mathrm{1}\right)=\mathrm{2}{n}\left(\mathrm{4}{n}−\mathrm{1}\right) \\ $$

Commented by manxsol last updated on 19/May/24

   ⇊

$$ \\ $$$$\:\underline{\downdownarrows} \\ $$

Commented by mr W last updated on 19/May/24

thanks!

$${thanks}! \\ $$

Answered by mathzup last updated on 08/May/24

ln∣y∣=ln∣1+x∣+Σ_(k=1) ^n ln(1+x^(2k) )   by derivation we get  (y^′ /y)=(1/(1+x)) +Σ_(k=1) ^n ((2k x^(2k−1) )/(1+x^(2k) )) ⇒  y^′ (x)=y(x)((1/(1+x)) +Σ_(k=1) ^n 2k(x^(2k−1) /(1+x^(2k) )))  ⇒y^′ (0)=y(o)(1+0)=y(0)=1

$${ln}\mid{y}\mid={ln}\mid\mathrm{1}+{x}\mid+\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}{k}} \right)\: \\ $$$${by}\:{derivation}\:{we}\:{get} \\ $$$$\frac{{y}^{'} }{{y}}=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{2}{k}\:{x}^{\mathrm{2}{k}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}{k}} }\:\Rightarrow \\ $$$${y}^{'} \left({x}\right)={y}\left({x}\right)\left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \mathrm{2}{k}\frac{{x}^{\mathrm{2}{k}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}{k}} }\right) \\ $$$$\Rightarrow{y}^{'} \left(\mathrm{0}\right)={y}\left({o}\right)\left(\mathrm{1}+\mathrm{0}\right)={y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com