Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 109585 by nimnim last updated on 24/Aug/20

If (xy+yz+zx)=1, then prove that  (x/(1−x^2 ))+(y/(1−y^2 ))+(z/(1−z^2 ))=((4xyz)/((1−x^2 )(1−y^2 )(1−z^2 )))

$${If}\:\left({xy}+{yz}+{zx}\right)=\mathrm{1},\:{then}\:{prove}\:{that} \\ $$$$\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }+\frac{{y}}{\mathrm{1}−{y}^{\mathrm{2}} }+\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }=\frac{\mathrm{4}{xyz}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{z}^{\mathrm{2}} \right)} \\ $$

Answered by som(math1967) last updated on 25/Aug/20

x(1−z^2 )(1−y^2 )+y(1−z^2 )(1−x^2 )    +z(1−x^2 )(1−y^2 )  =x+y+z−x^2 y−x^2 z−xyz  −y^2 z−y^2 x−xyz−z^2 x−z^2 y−xyz  +3xyz+xy^2 z+xyz^2 +x^2 yz  =(x+y+z)−x(xy+yz+zx)  −y(xy+yz+zx)−z(xy+yz+zx)  +3xyz+xyz(xy+yz+zx)  =x+y+z−x−y−z+4xyz ★  =4xyz  ★∵xy+yz+zx=1  ∴(x/(1−x^2 ))+(y/(1−y^2 ))+(z/(1−z^2 ))  =((4xyz)/((1−x^2 )(1−y^2 )(1−z^2 )))

$$\mathrm{x}\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)+\mathrm{y}\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\:\:+\mathrm{z}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right) \\ $$$$=\mathrm{x}+\mathrm{y}+\mathrm{z}−\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{x}^{\mathrm{2}} \mathrm{z}−\mathrm{xyz} \\ $$$$−\mathrm{y}^{\mathrm{2}} \mathrm{z}−\mathrm{y}^{\mathrm{2}} \mathrm{x}−\mathrm{xyz}−\mathrm{z}^{\mathrm{2}} \mathrm{x}−\mathrm{z}^{\mathrm{2}} \mathrm{y}−\mathrm{xyz} \\ $$$$+\mathrm{3xyz}+\mathrm{xy}^{\mathrm{2}} \mathrm{z}+\mathrm{xyz}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \mathrm{yz} \\ $$$$=\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)−\mathrm{x}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$$$−\mathrm{y}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)−\mathrm{z}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$$$+\mathrm{3xyz}+\mathrm{xyz}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$$$=\mathrm{x}+\mathrm{y}+\mathrm{z}−\mathrm{x}−\mathrm{y}−\mathrm{z}+\mathrm{4xyz}\:\bigstar \\ $$$$=\mathrm{4xyz} \\ $$$$\bigstar\because\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=\mathrm{1} \\ $$$$\therefore\frac{\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{y}}{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }+\frac{\mathrm{z}}{\mathrm{1}−\mathrm{z}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4xyz}}{\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)} \\ $$

Commented by nimnim last updated on 24/Aug/20

Thanks.

$${Thanks}. \\ $$

Commented by nimnim last updated on 24/Aug/20

Sir, I think the first line  x(1−x^2 )(1−y^2 )+.. is typo mistake.  Thank you once again.

$${Sir},\:{I}\:{think}\:{the}\:{first}\:{line} \\ $$$${x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{y}^{\mathrm{2}} \right)+..\:{is}\:{typo}\:{mistake}. \\ $$$${Thank}\:{you}\:{once}\:{again}. \\ $$

Commented by som(math1967) last updated on 25/Aug/20

yes

$$\mathrm{yes}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com