Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 112802 by Aina Samuel Temidayo last updated on 09/Sep/20

If xy+yz+zx=0, then    ((1/(x^2 −yz))+(1/(y^2 −zx))+(1/(z^2 −xy)))(x,y,z ≠ 0) is  equal to

$$\mathrm{If}\:\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=\mathrm{0},\:\mathrm{then} \\ $$$$ \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{yz}}+\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} −\mathrm{zx}}+\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} −\mathrm{xy}}\right)\left(\mathrm{x},\mathrm{y},\mathrm{z}\:\neq\:\mathrm{0}\right)\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$$$ \\ $$

Answered by MJS_new last updated on 09/Sep/20

z=−((xy)/(x+y)) ⇒ value =0

$${z}=−\frac{{xy}}{{x}+{y}}\:\Rightarrow\:\mathrm{value}\:=\mathrm{0} \\ $$

Answered by Dwaipayan Shikari last updated on 09/Sep/20

(1/(x^2 +xy+zx))+(1/(y^2 +yx+xy))+(1/(z^2 +xz+zy))               (xy+zx=−yz...)  =(1/((x+y+z)))(((xy+yz+zx)/(xyz)))=0

$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{xy}+{zx}}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} +{yx}+{xy}}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} +{xz}+{zy}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({xy}+{zx}=−{yz}...\right) \\ $$$$=\frac{\mathrm{1}}{\left({x}+{y}+{z}\right)}\left(\frac{{xy}+{yz}+{zx}}{{xyz}}\right)=\mathrm{0} \\ $$

Answered by nimnim last updated on 09/Sep/20

xy+yz+zx= { ((−xy=yz+zx)),((−yz=xy+zx)),((−zx=xy+yz)) :}        (1/(x^2 −yz))+(1/(y^2 −zx))+(1/(z^2 −xy))  =(1/(x^2 +xy+zx))+(1/(y^2 +xy+yz))+(1/(z^2 +yz+zx))  =(1/(x(x+y+z)))+(1/(y(y+x+z)))+(1/(z(z+y+x)))  =((yz+zx+xy)/(xyz(x+y+z)))=(0/(xyz(x+y+z)))=0★

$$\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=\begin{cases}{−\mathrm{xy}=\mathrm{yz}+\mathrm{zx}}\\{−\mathrm{yz}=\mathrm{xy}+\mathrm{zx}}\\{−\mathrm{zx}=\mathrm{xy}+\mathrm{yz}}\end{cases} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{yz}}+\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} −\mathrm{zx}}+\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} −\mathrm{xy}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{zx}}+\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} +\mathrm{xy}+\mathrm{yz}}+\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} +\mathrm{yz}+\mathrm{zx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)}+\frac{\mathrm{1}}{\mathrm{y}\left(\mathrm{y}+\mathrm{x}+\mathrm{z}\right)}+\frac{\mathrm{1}}{\mathrm{z}\left(\mathrm{z}+\mathrm{y}+\mathrm{x}\right)} \\ $$$$=\frac{\mathrm{yz}+\mathrm{zx}+\mathrm{xy}}{\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)}=\frac{\mathrm{0}}{\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)}=\mathrm{0}\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com