Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207197 by hardmath last updated on 09/May/24

If   xy = (1/3)   ,   xz = (3/8)   and   yz = (1/2)  For   x , y and z   compare.

$$\mathrm{If}\:\:\:\mathrm{xy}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:\:,\:\:\:\mathrm{xz}\:=\:\frac{\mathrm{3}}{\mathrm{8}}\:\:\:\mathrm{and}\:\:\:\mathrm{yz}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{For}\:\:\:\mathrm{x}\:,\:\mathrm{y}\:\mathrm{and}\:\mathrm{z}\:\:\:\mathrm{compare}. \\ $$

Answered by A5T last updated on 09/May/24

x=(1/(3y));z=(1/(2y))  xz=(3/8)⇒(1/(6y^2 ))=(3/8)⇒y^2 =(4/9)⇒y=+_− (2/3)  ⇒x=+_− (1/2);z=+_− (3/4)

$${x}=\frac{\mathrm{1}}{\mathrm{3}{y}};{z}=\frac{\mathrm{1}}{\mathrm{2}{y}} \\ $$$${xz}=\frac{\mathrm{3}}{\mathrm{8}}\Rightarrow\frac{\mathrm{1}}{\mathrm{6}{y}^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{8}}\Rightarrow{y}^{\mathrm{2}} =\frac{\mathrm{4}}{\mathrm{9}}\Rightarrow{y}=\underset{−} {+}\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow{x}=\underset{−} {+}\frac{\mathrm{1}}{\mathrm{2}};{z}=\underset{−} {+}\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Answered by mr W last updated on 09/May/24

(i)×(ii)×(iii):  (xyz)^2 =(1/3)×(3/8)×(1/2)=(1/(16))  ⇒xyz=±(1/4)      ...(iv)  (iv)/(i):  z=±(3/4)  (iv)/(ii):  y=±(2/3)  (iv)/(iii):  x=±(1/2)

$$\left({i}\right)×\left({ii}\right)×\left({iii}\right): \\ $$$$\left({xyz}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{8}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\Rightarrow{xyz}=\pm\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:...\left({iv}\right) \\ $$$$\left({iv}\right)/\left({i}\right): \\ $$$${z}=\pm\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\left({iv}\right)/\left({ii}\right): \\ $$$${y}=\pm\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left({iv}\right)/\left({iii}\right): \\ $$$${x}=\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by hardmath last updated on 09/May/24

dear professor, x,y,z>0

$$\mathrm{dear}\:\mathrm{professor},\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0} \\ $$

Commented by mr W last updated on 09/May/24

but it was not said that x, y, z >0.

$${but}\:{it}\:{was}\:{not}\:{said}\:{that}\:{x},\:{y},\:{z}\:>\mathrm{0}. \\ $$

Commented by mr W last updated on 09/May/24

if x,y,z>0 then x<y<z

$${if}\:{x},{y},{z}>\mathrm{0}\:{then}\:{x}<{y}<{z} \\ $$

Commented by hardmath last updated on 09/May/24

thank you dear professor

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com