Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 150303 by mathdanisur last updated on 10/Aug/21

If   x;y;z∈[0;∞)  then:  2^x +2^y +2^z +2^(x+y+z)  ≥ 4^(√(xy)) +4^(√(yz)) +4^(√(zx)) +1

$$\mathrm{If}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z}\in\left[\mathrm{0};\infty\right)\:\:\mathrm{then}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} +\mathrm{2}^{\boldsymbol{\mathrm{y}}} +\mathrm{2}^{\boldsymbol{\mathrm{z}}} +\mathrm{2}^{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}} \:\geqslant\:\mathrm{4}^{\sqrt{\boldsymbol{\mathrm{xy}}}} +\mathrm{4}^{\sqrt{\boldsymbol{\mathrm{yz}}}} +\mathrm{4}^{\sqrt{\boldsymbol{\mathrm{zx}}}} +\mathrm{1} \\ $$

Answered by aleks041103 last updated on 11/Aug/21

x;y;z∈[0;∞) ⇒ 2^x ,2^y ,2^z ≥1  ⇒(2^x −1)(2^y −1)(2^z −1)≥0  Expanding the parentacies  2^x +2^y +2^z +2^(x+y+z) ≥2^(x+y) +2^(y+z) +2^(x+z) +1  But we know that:  ((x+y)/2)≥(√(xy))⇒x+y≥2(√(xy))⇒2^(x+y) ≥2^(2(√(xy))) =4^(√(xy))   Analogously  2^(y+z) ≥4^(√(yz))  and 2^(x+z) ≥4^(√(xz))   Therefore  2^x +2^y +2^z +2^(x+y+z) ≥4^(√(xy)) +4^(√(yz)) +4^(√(xz)) +1

$$\mathrm{x};\mathrm{y};\mathrm{z}\in\left[\mathrm{0};\infty\right)\:\Rightarrow\:\mathrm{2}^{{x}} ,\mathrm{2}^{{y}} ,\mathrm{2}^{{z}} \geqslant\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{2}^{{x}} −\mathrm{1}\right)\left(\mathrm{2}^{{y}} −\mathrm{1}\right)\left(\mathrm{2}^{{z}} −\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$${Expanding}\:{the}\:{parentacies} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{{y}} +\mathrm{2}^{{z}} +\mathrm{2}^{{x}+{y}+{z}} \geqslant\mathrm{2}^{{x}+{y}} +\mathrm{2}^{{y}+{z}} +\mathrm{2}^{{x}+{z}} +\mathrm{1} \\ $$$${But}\:{we}\:{know}\:{that}: \\ $$$$\frac{{x}+{y}}{\mathrm{2}}\geqslant\sqrt{{xy}}\Rightarrow{x}+{y}\geqslant\mathrm{2}\sqrt{{xy}}\Rightarrow\mathrm{2}^{{x}+{y}} \geqslant\mathrm{2}^{\mathrm{2}\sqrt{{xy}}} =\mathrm{4}^{\sqrt{{xy}}} \\ $$$${Analogously} \\ $$$$\mathrm{2}^{{y}+{z}} \geqslant\mathrm{4}^{\sqrt{{yz}}} \:{and}\:\mathrm{2}^{{x}+{z}} \geqslant\mathrm{4}^{\sqrt{{xz}}} \\ $$$${Therefore} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{{y}} +\mathrm{2}^{{z}} +\mathrm{2}^{{x}+{y}+{z}} \geqslant\mathrm{4}^{\sqrt{{xy}}} +\mathrm{4}^{\sqrt{{yz}}} +\mathrm{4}^{\sqrt{{xz}}} +\mathrm{1} \\ $$

Commented by mathdanisur last updated on 11/Aug/21

ThankYou Ser

$$\mathrm{ThankYou}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com