Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 175838 by Rasheed.Sindhi last updated on 08/Sep/22

If x,y and z be the pth, qth and rth  terms of an AP, show that   determinant ((p,q,r),(x,y,z),(1,1,1))=0

$${If}\:{x},{y}\:{and}\:{z}\:{be}\:{the}\:{pth},\:{qth}\:{and}\:{rth} \\ $$$${terms}\:{of}\:{an}\:{AP},\:{show}\:{that} \\ $$$$\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{x}}&{{y}}&{{z}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$

Answered by Rasheed.Sindhi last updated on 08/Sep/22

 determinant ((p,q,r),(x,y,z),(1,1,1))=0   determinant ((p,q,r),((a+(p−1)d),(a+(q−1)d),(a+(q−1)d)),(1,1,1))  = determinant ((p,q,r),((a−d+pd),(a−d+qd),(a−d+qd)),(1,1,1))  = determinant ((p,q,r),((a−d),(a−d),(a−d)),(1,1,1))[R2−R1∙d]  =(a−d) determinant ((p,q,r),(1,1,1),(1,1,1))=(a−d)∙0=0  [Two rows are identical]  Proved

$$\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{x}}&{{y}}&{{z}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{a}+\left({p}−\mathrm{1}\right){d}}&{{a}+\left({q}−\mathrm{1}\right){d}}&{{a}+\left({q}−\mathrm{1}\right){d}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix} \\ $$$$=\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{a}−{d}+{pd}}&{{a}−{d}+{qd}}&{{a}−{d}+{qd}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix} \\ $$$$=\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{a}−{d}}&{{a}−{d}}&{{a}−{d}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix}\left[\mathrm{R2}−\mathrm{R1}\centerdot\mathrm{d}\right] \\ $$$$=\left({a}−{d}\right)\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix}=\left({a}−{d}\right)\centerdot\mathrm{0}=\mathrm{0} \\ $$$$\left[\mathcal{T}{wo}\:{rows}\:{are}\:{identical}\right] \\ $$$${Proved} \\ $$

Answered by som(math1967) last updated on 08/Sep/22

 determinant ((p,q,r),((a+pd−d),(a+qd−d),(a+rd−d)),(1,1,1))  C_1 ^l →C_1 −C_2  ,C_2 ^l →C_2 −C_3    determinant (((p−q),(q−r),r),(((p−q)d),((q−r)d),(a+rd−d)),(0,0,1))  (p−q)(q−r) determinant ((1,1,r),(d,d,(a+rd−d)),(0,0,1))  =(p−q)(q−r)×0 [C_1 ,C_2  identical]  =0

$$\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{a}+{pd}−{d}}&{{a}+{qd}−{d}}&{{a}+{rd}−{d}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix} \\ $$$${C}_{\mathrm{1}} ^{{l}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \:,{C}_{\mathrm{2}} ^{{l}} \rightarrow{C}_{\mathrm{2}} −{C}_{\mathrm{3}} \\ $$$$\begin{vmatrix}{{p}−{q}}&{{q}−{r}}&{{r}}\\{\left({p}−{q}\right){d}}&{\left({q}−{r}\right){d}}&{{a}+{rd}−{d}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{vmatrix} \\ $$$$\left({p}−{q}\right)\left({q}−{r}\right)\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{{r}}\\{{d}}&{{d}}&{{a}+{rd}−{d}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{vmatrix} \\ $$$$=\left({p}−{q}\right)\left({q}−{r}\right)×\mathrm{0}\:\left[{C}_{\mathrm{1}} ,{C}_{\mathrm{2}} \:{identical}\right] \\ $$$$=\mathrm{0} \\ $$

Commented by Rasheed.Sindhi last updated on 08/Sep/22

Good sir, thank you!

$${Good}\:{sir},\:{thank}\:{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com