Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 51284 by Tawa1 last updated on 25/Dec/18

If  x is real, show that  (2 + j)e^((1 + j3)x)  + (2 − j)e^((1 − j3)x)   is also real

$$\mathrm{If}\:\:\boldsymbol{\mathrm{x}}\:\mathrm{is}\:\mathrm{real},\:\mathrm{show}\:\mathrm{that}\:\:\left(\mathrm{2}\:+\:\mathrm{j}\right)\mathrm{e}^{\left(\mathrm{1}\:+\:\mathrm{j3}\right)\boldsymbol{\mathrm{x}}} \:+\:\left(\mathrm{2}\:−\:\boldsymbol{\mathrm{j}}\right)\boldsymbol{\mathrm{e}}^{\left(\mathrm{1}\:−\:\boldsymbol{\mathrm{j}}\mathrm{3}\right)\boldsymbol{\mathrm{x}}} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{real} \\ $$

Commented by maxmathsup by imad last updated on 25/Dec/18

first what mean j and j3?

$${first}\:{what}\:{mean}\:{j}\:{and}\:{j}\mathrm{3}? \\ $$$$ \\ $$

Answered by mr W last updated on 25/Dec/18

2+i=(√5)((2/(√5))+(1/(√5))i)=(√5)(cos α+i sin α)  =(√5)e^(αi)   with α=tan^(−1) (1/2)  2−i=(√5)((2/(√5))−(1/(√5))i)=(√5)[cos (−α)+i sin (−α)]  =(√5)e^(−αi)     S=(2+i)e^((1+3i)x) +(2−i)e^((1−3i)x)   =(√5)e^(αi) e^((1+3i)x) +(√5)e^(−αi) e^((1−3i)x)   =(√5)e^x [e^((3x+α)i) +e^(−(3x+α)i) ]  =(√5)e^x [cos (3x+α)+i sin (3x+α)+cos {−(3x+α)}+i sin {−(3x+α)}]  =(√5)e^x [cos (3x+α)+i sin (3x+α)+cos (3x+α)−i sin (3x+α)]  =(√5)e^x [2cos (3x+α)]  =2(√5)e^x  cos (3x+α)  =2(√5)e^x  (cos α cos 3x−sin α sin 3x)  =2(√5)e^x  ((2/(√5))cos 3x−(1/(√5))sin 3x)  =2e^x (2 cos 3x−sin 3x)  =real

$$\mathrm{2}+{i}=\sqrt{\mathrm{5}}\left(\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}+\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}{i}\right)=\sqrt{\mathrm{5}}\left(\mathrm{cos}\:\alpha+{i}\:\mathrm{sin}\:\alpha\right) \\ $$$$=\sqrt{\mathrm{5}}{e}^{\alpha{i}} \\ $$$${with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}−{i}=\sqrt{\mathrm{5}}\left(\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}−\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}{i}\right)=\sqrt{\mathrm{5}}\left[\mathrm{cos}\:\left(−\alpha\right)+{i}\:\mathrm{sin}\:\left(−\alpha\right)\right] \\ $$$$=\sqrt{\mathrm{5}}{e}^{−\alpha{i}} \\ $$$$ \\ $$$${S}=\left(\mathrm{2}+{i}\right){e}^{\left(\mathrm{1}+\mathrm{3}{i}\right){x}} +\left(\mathrm{2}−{i}\right){e}^{\left(\mathrm{1}−\mathrm{3}{i}\right){x}} \\ $$$$=\sqrt{\mathrm{5}}{e}^{\alpha{i}} {e}^{\left(\mathrm{1}+\mathrm{3}{i}\right){x}} +\sqrt{\mathrm{5}}{e}^{−\alpha{i}} {e}^{\left(\mathrm{1}−\mathrm{3}{i}\right){x}} \\ $$$$=\sqrt{\mathrm{5}}{e}^{{x}} \left[{e}^{\left(\mathrm{3}{x}+\alpha\right){i}} +{e}^{−\left(\mathrm{3}{x}+\alpha\right){i}} \right] \\ $$$$=\sqrt{\mathrm{5}}{e}^{{x}} \left[\mathrm{cos}\:\left(\mathrm{3}{x}+\alpha\right)+{i}\:\mathrm{sin}\:\left(\mathrm{3}{x}+\alpha\right)+\mathrm{cos}\:\left\{−\left(\mathrm{3}{x}+\alpha\right)\right\}+{i}\:\mathrm{sin}\:\left\{−\left(\mathrm{3}{x}+\alpha\right)\right\}\right] \\ $$$$=\sqrt{\mathrm{5}}{e}^{{x}} \left[\mathrm{cos}\:\left(\mathrm{3}{x}+\alpha\right)+{i}\:\mathrm{sin}\:\left(\mathrm{3}{x}+\alpha\right)+\mathrm{cos}\:\left(\mathrm{3}{x}+\alpha\right)−{i}\:\mathrm{sin}\:\left(\mathrm{3}{x}+\alpha\right)\right] \\ $$$$=\sqrt{\mathrm{5}}{e}^{{x}} \left[\mathrm{2cos}\:\left(\mathrm{3}{x}+\alpha\right)\right] \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}{e}^{{x}} \:\mathrm{cos}\:\left(\mathrm{3}{x}+\alpha\right) \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}{e}^{{x}} \:\left(\mathrm{cos}\:\alpha\:\mathrm{cos}\:\mathrm{3}{x}−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\mathrm{3}{x}\right) \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}{e}^{{x}} \:\left(\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\mathrm{cos}\:\mathrm{3}{x}−\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\mathrm{sin}\:\mathrm{3}{x}\right) \\ $$$$=\mathrm{2}{e}^{{x}} \left(\mathrm{2}\:\mathrm{cos}\:\mathrm{3}{x}−\mathrm{sin}\:\mathrm{3}{x}\right) \\ $$$$={real} \\ $$

Commented by Tawa1 last updated on 25/Dec/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com