Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202258 by MATHEMATICSAM last updated on 23/Dec/23

If (x/a) = (y/b) then show that   ((x^3  + 3xy^2 )/(a^3  + 3ab^2 )) = (( y^3  + 3x^2 y)/(b^3  + 3a^2 b)) .

$$\mathrm{If}\:\frac{{x}}{{a}}\:=\:\frac{{y}}{{b}}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\frac{{x}^{\mathrm{3}} \:+\:\mathrm{3}{xy}^{\mathrm{2}} }{{a}^{\mathrm{3}} \:+\:\mathrm{3}{ab}^{\mathrm{2}} }\:=\:\frac{\:{y}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{2}} {y}}{{b}^{\mathrm{3}} \:+\:\mathrm{3}{a}^{\mathrm{2}} {b}}\:. \\ $$

Answered by deleteduser1 last updated on 23/Dec/23

((x(x^2 +3y^2 )=x^3 (1+((3y^2 )/x^2 )))/(y^3 (((3x^2 )/y^2 )+1)))=(a^3 /b^3 )×(((3b^2 +a^2 )/a^2 )/((3a^2 +b^2 )/b^2 ))  =((a(3b^2 +a^2 ))/(b(3a^2 +b^2 )))=((a^3 +3ab^2 )/(3a^2 b+b^3 )).

$$\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} \right)={x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{3}{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}{{y}^{\mathrm{3}} \left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }+\mathrm{1}\right)}=\frac{{a}^{\mathrm{3}} }{{b}^{\mathrm{3}} }×\frac{\frac{\mathrm{3}{b}^{\mathrm{2}} +{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}{\frac{\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }} \\ $$$$=\frac{{a}\left(\mathrm{3}{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{b}\left(\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}=\frac{{a}^{\mathrm{3}} +\mathrm{3}{ab}^{\mathrm{2}} }{\mathrm{3}{a}^{\mathrm{2}} {b}+{b}^{\mathrm{3}} }. \\ $$

Answered by Rasheed.Sindhi last updated on 23/Dec/23

(x/a) = (y/b)=k  x=ak,y=bk  lhs:  (((ak)^3 +3(ak)(bk)^2 )/(3(ak)^2 (bk)+(bk)^3 ))=((a^3 k^3 +3ab^2 k^3 )/(3a^2 bk^3 +b^3 k^3 ))  =((k^3 (a^3 +3ab^2 ))/(k^3 (3a^2 b + b^3 )))=((a^3  + 3ab^2 )/(3a^2 b + b^3 ))=rhs

$$\frac{{x}}{{a}}\:=\:\frac{{y}}{{b}}={k} \\ $$$${x}={ak},{y}={bk} \\ $$$${lhs}: \\ $$$$\frac{\left({ak}\right)^{\mathrm{3}} +\mathrm{3}\left({ak}\right)\left({bk}\right)^{\mathrm{2}} }{\mathrm{3}\left({ak}\right)^{\mathrm{2}} \left({bk}\right)+\left({bk}\right)^{\mathrm{3}} }=\frac{{a}^{\mathrm{3}} {k}^{\mathrm{3}} +\mathrm{3}{ab}^{\mathrm{2}} {k}^{\mathrm{3}} }{\mathrm{3}{a}^{\mathrm{2}} {bk}^{\mathrm{3}} +{b}^{\mathrm{3}} {k}^{\mathrm{3}} } \\ $$$$=\frac{{k}^{\mathrm{3}} \left({a}^{\mathrm{3}} +\mathrm{3}{ab}^{\mathrm{2}} \right)}{{k}^{\mathrm{3}} \left(\mathrm{3}{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{3}} \right)}=\frac{{a}^{\mathrm{3}} \:+\:\mathrm{3}{ab}^{\mathrm{2}} }{\mathrm{3}{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{3}} }={rhs} \\ $$

Answered by Frix last updated on 23/Dec/23

((x(x^2 +3y^2 ))/(a(a^2 +3b^2 )))=((y(y^2 +3x^2 ))/(b(b^2 +3a^2 )))  (x/a)=(y/b)  ((x^2 +3y^2 )/(a^2 +3b^2 ))=((y^2 +3x^2 )/(b^2 +3a^2 ))  ((b^2 +3a^2 )/(a^2 +3b^2 ))=((y^2 +3x^2 )/(x^2 +3y^2 ))  y=((bx)/a)  ((b^2 +3a^2 )/(a^2 +3b^2 ))=((((b^2 x^2 )/a^2 )+3x^2 )/(x^2 +((3b^2 x^2 )/a^2 )))     true

$$\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} \right)}{{a}\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)}=\frac{{y}\left({y}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} \right)}{{b}\left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)} \\ $$$$\frac{{x}}{{a}}=\frac{{y}}{{b}} \\ $$$$\frac{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} }=\frac{{y}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} } \\ $$$$\frac{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} }=\frac{{y}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} } \\ $$$${y}=\frac{{bx}}{{a}} \\ $$$$\frac{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} }=\frac{\frac{{b}^{\mathrm{2}} {x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\mathrm{3}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\frac{\mathrm{3}{b}^{\mathrm{2}} {x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:\:\:\:\:\mathrm{true} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com