Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 138469 by KwesiDerek last updated on 13/Apr/21

If   x^(26) −521x^(13) =1        x^(10) +(1/x^(10) )=?  Any help

$$\boldsymbol{\mathrm{If}}\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{26}} −\mathrm{521}\boldsymbol{\mathrm{x}}^{\mathrm{13}} =\mathrm{1} \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{10}} +\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{10}} }=? \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}}\: \\ $$

Answered by MJS_new last updated on 14/Apr/21

x^(13) =((521±233(√5))/2)  just trying around, at the end approximating  (((521+233(√5))/2))^(1/(13)) ≈1.618034 ⇒  x=((1±(√5))/2)  ⇒ x^(10) +(1/x^(10) )=123

$${x}^{\mathrm{13}} =\frac{\mathrm{521}\pm\mathrm{233}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{just}\:\mathrm{trying}\:\mathrm{around},\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}\:\mathrm{approximating} \\ $$$$\sqrt[{\mathrm{13}}]{\frac{\mathrm{521}+\mathrm{233}\sqrt{\mathrm{5}}}{\mathrm{2}}}\approx\mathrm{1}.\mathrm{618034}\:\Rightarrow \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}^{\mathrm{10}} +\frac{\mathrm{1}}{{x}^{\mathrm{10}} }=\mathrm{123} \\ $$

Answered by TheSupreme last updated on 14/Apr/21

x^(13) =t  t^2 −521t+1=0 → t=((521±(√(521^2 −4)))/2)  x^(10) =t^((10)/(13))   x^(10) +(1/x^(10) )=[((521±(√(521^2 −4)))/2)]^((10)/(13)) +[(2/(521±(√(521^2 −4))))]^((10)/(13))

$${x}^{\mathrm{13}} ={t} \\ $$$${t}^{\mathrm{2}} −\mathrm{521}{t}+\mathrm{1}=\mathrm{0}\:\rightarrow\:{t}=\frac{\mathrm{521}\pm\sqrt{\mathrm{521}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$$${x}^{\mathrm{10}} ={t}^{\frac{\mathrm{10}}{\mathrm{13}}} \\ $$$${x}^{\mathrm{10}} +\frac{\mathrm{1}}{{x}^{\mathrm{10}} }=\left[\frac{\mathrm{521}\pm\sqrt{\mathrm{521}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right]^{\frac{\mathrm{10}}{\mathrm{13}}} +\left[\frac{\mathrm{2}}{\mathrm{521}\pm\sqrt{\mathrm{521}^{\mathrm{2}} −\mathrm{4}}}\right]^{\frac{\mathrm{10}}{\mathrm{13}}} \\ $$

Commented by Rasheed.Sindhi last updated on 14/Apr/21

Typo sir. t^2 −521t−1=0

$${Typo}\:{sir}.\:{t}^{\mathrm{2}} −\mathrm{521}{t}−\mathrm{1}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com