Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 185695 by Spillover last updated on 25/Jan/23

If u^→  and v^→  are vectors in R^3   then prove that   u^→ .v^→ =(1/4)∥u^→ +v^→ ∥^2 −(1/4)∥u^→ −v^→ ∥^2

$${If}\:\overset{\rightarrow} {{u}}\:{and}\:\overset{\rightarrow} {{v}}\:{are}\:{vectors}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$${then}\:{prove}\:{that}\: \\ $$$$\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}}=\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}+\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}−\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} \\ $$

Answered by mahdipoor last updated on 26/Jan/23

u=(a,b,c)       v=(x,y,z)  (1/4)∣∣u+v∣∣^2 −(1/4)∣∣u−v∣∣^2 =  (1/4)[(a+x)^2 +(b+y)^2 +(c+z)^2 ]−  (1/4)[(a−x)^2 +(b−y)^2 +(c−z)^2 ]=  (1/4)[4ax+4by+4cz]=ax+by+cz=u.v

$${u}=\left({a},{b},{c}\right)\:\:\:\:\:\:\:{v}=\left({x},{y},{z}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mid\mid{u}+{v}\mid\mid^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\mid\mid{u}−{v}\mid\mid^{\mathrm{2}} = \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left[\left({a}+{x}\right)^{\mathrm{2}} +\left({b}+{y}\right)^{\mathrm{2}} +\left({c}+{z}\right)^{\mathrm{2}} \right]− \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left[\left({a}−{x}\right)^{\mathrm{2}} +\left({b}−{y}\right)^{\mathrm{2}} +\left({c}−{z}\right)^{\mathrm{2}} \right]= \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{4}{ax}+\mathrm{4}{by}+\mathrm{4}{cz}\right]={ax}+{by}+{cz}={u}.{v} \\ $$

Answered by cortano1 last updated on 26/Jan/23

∣∣u^→  + v^→  ∣∣^2 = ∣∣u^→ ∣∣^2 +∣∣v^→ ∣∣^2 +2u^→ .v^→   ∣∣u^→ −v^→ ∣∣^2 = ∣∣u^→ ∣∣^2 +∣∣v^⌣ ∣∣^2 −2u^→ .v^→   ∣u^→ +v^→ ∣^2 −∣u^→ −v^→ ∣^2 =4u^→ .v^→

$$\mid\mid\overset{\rightarrow} {{u}}\:+\:\overset{\rightarrow} {{v}}\:\mid\mid^{\mathrm{2}} =\:\mid\mid\overset{\rightarrow} {{u}}\mid\mid^{\mathrm{2}} +\mid\mid\overset{\rightarrow} {{v}}\mid\mid^{\mathrm{2}} +\mathrm{2}\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}} \\ $$$$\mid\mid\overset{\rightarrow} {{u}}−\overset{\rightarrow} {{v}}\mid\mid^{\mathrm{2}} =\:\mid\mid\overset{\rightarrow} {{u}}\mid\mid^{\mathrm{2}} +\mid\mid\overset{\smile} {{v}}\mid\mid^{\mathrm{2}} −\mathrm{2}\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}} \\ $$$$\mid\overset{\rightarrow} {{u}}+\overset{\rightarrow} {{v}}\mid^{\mathrm{2}} −\mid\overset{\rightarrow} {{u}}−\overset{\rightarrow} {{v}}\mid^{\mathrm{2}} =\mathrm{4}\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com