Previous in Probability and Statistics Next in Probability and Statistics | ||
Question Number 217909 by Tawa11 last updated on 23/Mar/25 | ||
![]() | ||
If two fair dice is thrown twice, what is the probability of obtaining an even number | ||
Commented by mr W last updated on 24/Mar/25 | ||
![]() | ||
$${p}=\mathrm{1}−\frac{\mathrm{2}×\mathrm{4}}{\mathrm{2}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ | ||
Commented by Unhombre last updated on 23/Mar/25 | ||
![]() | ||
$${hey}. \\ $$$${so}\:{we}\:{are}\:{given}\:{that}\:{have}\:{two}\:{dice}\:{and} \\ $$$${we}\:{want}\:{the}\:{even}\:{numbers}\:{so}:\:\: \\ $$$$\frac{\mathrm{3}}{\mathrm{6}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:=\:\left\{\mathrm{2}\:,\:\mathrm{4}\:,\:\mathrm{6}\right\}\: \\ $$$${since}\:{we}\:{have}\:{two}\:{dice}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${and}\:{we}\:{have}\:{rolled}\:{it}\:{twice}\:{so}: \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\:×\:\frac{\mathrm{1}}{\mathrm{4}}\:=\:\frac{\mathrm{1}}{\mathrm{16}}\:{or}\:\mathrm{6}.\mathrm{25\%} \\ $$ | ||
Commented by Frix last updated on 23/Mar/25 | ||
![]() | ||
$$\mathrm{Question}\:\mathrm{not}\:\mathrm{clear}.\:\mathrm{How}\:\mathrm{do}\:\mathrm{we}\:\mathrm{proceed}? \\ $$$$\mathrm{Assuming} \\ $$$${n}_{\mathrm{1}} ={d}_{\mathrm{1}} +{d}_{\mathrm{2}} \:\left(\mathrm{1}^{\mathrm{st}} \:\mathrm{throw}\right) \\ $$$${n}_{\mathrm{2}} ={d}_{\mathrm{1}} +{d}_{\mathrm{2}} \:\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{throw}\right) \\ $$$$\mathrm{The}\:\mathrm{chance}\:{n}_{{j}} \:\mathrm{is}\:\mathrm{even}\:\mathrm{is}\:{p}=\frac{\mathrm{1}}{\mathrm{2}}\:^{\left(\ast\right)} \\ $$$$\Rightarrow \\ $$$$\mathrm{The}\:\mathrm{chance}\:\mathrm{of}\:\mathrm{both}\:{n}_{\mathrm{1}} ,\:{n}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{odd}\:\mathrm{is} \\ $$$$\left(\mathrm{1}−{p}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{The}\:\mathrm{chance}\:{n}_{\mathrm{1}} \:\mathrm{or}\:{n}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{even}\:\mathrm{is} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$$$\left(\ast\right) \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{1} \\ $$$$\mathrm{3}\:\:\:\:\:\mathrm{2}\:× \\ $$$$\mathrm{4}\:\:\:\:\:\mathrm{3} \\ $$$$\mathrm{5}\:\:\:\:\:\mathrm{4}\:× \\ $$$$\mathrm{6}\:\:\:\:\:\mathrm{5} \\ $$$$\mathrm{7}\:\:\:\:\:\mathrm{6}\:× \\ $$$$\mathrm{8}\:\:\:\:\:\mathrm{5} \\ $$$$\mathrm{9}\:\:\:\:\:\mathrm{4}\:× \\ $$$$\mathrm{10}\:\:\:\mathrm{3} \\ $$$$\mathrm{11}\:\:\:\mathrm{2}\:× \\ $$$$\mathrm{12}\:\:\:\mathrm{1} \\ $$ | ||
Commented by Frix last updated on 23/Mar/25 | ||
![]() | ||
$$\mathrm{Dear}\:\mathrm{Unhombre},\:\mathrm{you}'\mathrm{re}\:\mathrm{wrong}. \\ $$$$\mathrm{The}\:\mathrm{chance}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{even}\:\mathrm{number}\:\mathrm{must} \\ $$$$\mathrm{be}\:\mathrm{greater}\:\mathrm{when}\:\mathrm{you}\:\mathrm{throw}\:\mathrm{4}\:\mathrm{dices}... \\ $$ | ||
Commented by Unhombre last updated on 23/Mar/25 | ||
![]() | ||
$${Hi}\:{dear}\:{Frix}\: \\ $$$${Well}\:{it}\:{is}\:{saying}\:{we}\:{have}\:{two}\:{dices}\:{and}\:{we}\: \\ $$$${throw}\:{it}\:{twice}\:{so}\:{I}\:{dont}\:{think}\:{I}\:{did}\: \\ $$$${something}\:{wrong} \\ $$$${could}\:{you}\:{please}\:{clarify}\:{where}\:{I}\:{did}\:{it} \\ $$$${wrong}? \\ $$$${Thank}\:{you} \\ $$ | ||
Commented by mr W last updated on 23/Mar/25 | ||
![]() | ||
$${i}\:{also}\:{think}\:{that}\:{the}\:{question}\:{is}\:{not} \\ $$$${clear}.\:{what}\:{means}\:``{obtaining}\:{an} \\ $$$${even}\:{number}''?\:{two}\:{dice}\:{and}\:{thrown} \\ $$$${twice},\:{we}\:{get}\:{totally}\:\mathrm{4}\:{numbers}.\:{is} \\ $$$${it}\:{valid}\:{if}\:{only}\:{one}\:{number}\:{is}\:{even}, \\ $$$${or}\:{at}\:{least}\:{one}\:{of}\:{these}\:\mathrm{4}\:{numbers}\: \\ $$$${is}\:{even}\:{or}\:{all}\:\mathrm{4}\:{numbers}\:{must}\:{be}\: \\ $$$${even}? \\ $$ | ||
Commented by Frix last updated on 23/Mar/25 | ||
![]() | ||
$$@\mathrm{Unhombre} \\ $$$$\mathrm{To}\:\mathrm{make}\:\mathrm{it}\:\mathrm{more}\:\mathrm{clear}: \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{2}\:\mathrm{dices},\:\mathrm{we}\:\mathrm{want}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{6} \\ $$$$\mathrm{The}\:\mathrm{chance}\:\mathrm{for}\:\mathrm{each}\:\mathrm{dice}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\mathrm{The}\:\mathrm{chance}\:\mathrm{for}\:{no}\:\mathrm{6}\:\mathrm{is}\:\frac{\mathrm{5}}{\mathrm{6}}\:\mathrm{per}\:\mathrm{dice}\:\Rightarrow\:\mathrm{the} \\ $$$$\mathrm{chance}\:\mathrm{for}\:{no}\:\mathrm{6}\:\mathrm{for}\:\mathrm{both}\:\mathrm{dices}\:\mathrm{is} \\ $$$$\frac{\mathrm{5}}{\mathrm{6}}×\frac{\mathrm{5}}{\mathrm{6}}=\frac{\mathrm{25}}{\mathrm{36}} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{chance}\:\mathrm{for}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{6}\:\mathrm{is} \\ $$$$\mathrm{1}−\frac{\mathrm{25}}{\mathrm{36}}=\frac{\mathrm{11}}{\mathrm{36}}\approx\mathrm{30}.\mathrm{56\%} \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\:\mathrm{4}\:\mathrm{dices},\:\mathrm{for}\:{no}\:\mathrm{6}\:\mathrm{we}\:\mathrm{have} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{4}} =\frac{\mathrm{625}}{\mathrm{1296}} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{chance}\:\mathrm{for}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{6}\:\mathrm{is} \\ $$$$\mathrm{1}−\frac{\mathrm{625}}{\mathrm{1296}}=\frac{\mathrm{671}}{\mathrm{1296}}\approx\mathrm{51}.\mathrm{77\%} \\ $$$$ \\ $$$$\mathrm{Now}\:\mathrm{the}\:\mathrm{chance}\:\mathrm{for}\:\mathrm{an}\:\mathrm{even}\:\mathrm{number}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{for}\:\mathrm{1}\:\mathrm{dice}\:\Rightarrow\:\mathrm{the}\:\mathrm{chance}\:\mathrm{for}\:{no}\:\mathrm{even}\:\mathrm{number} \\ $$$$\mathrm{cinfusingly}\:\mathrm{is}\:\mathrm{also}\:\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{no}\:\mathrm{even}\:\mathrm{number} \\ $$$$\mathrm{with}\:\mathrm{4}\:\mathrm{dices}: \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\mathrm{At}\:\mathrm{least}\:\mathrm{one}\:\mathrm{even}\:\mathrm{number} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{16}}=\frac{\mathrm{15}}{\mathrm{16}}=\mathrm{93}.\mathrm{75\%} \\ $$ | ||
Commented by Tawa11 last updated on 23/Mar/25 | ||
![]() | ||
$$\mathrm{If}\:\mathrm{it}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{do}\:\mathrm{everything}\:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{question}.\:\mathrm{It}\:\mathrm{will}\:\mathrm{be}\:\mathrm{fine}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{getting}\:\mathrm{a}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{even}\:\mathrm{numbers}. \\ $$ | ||
Commented by Tawa11 last updated on 23/Mar/25 | ||
![]() | ||
$$ \\ $$If two fair dice is thrown twice, what is the probability of obtaining an even number. (That is, sum of the numbers is even). This is what I think. | ||
Commented by mr W last updated on 24/Mar/25 | ||
![]() | ||
$${thrown}\:\mathrm{4}\:{times},\:\:\:\checkmark={sum}\:{is}\:{even} \\ $$$${OOOO}\:\:\checkmark \\ $$$${OOOE} \\ $$$${OOEO} \\ $$$${OOEE}\:\:\checkmark \\ $$$${OEOO} \\ $$$${OEOE}\:\:\checkmark \\ $$$${OEEO}\:\:\checkmark \\ $$$${OEEE} \\ $$$${EOOO} \\ $$$${EOOE}\:\:\checkmark \\ $$$${EOEO}\:\:\checkmark \\ $$$${EOEE} \\ $$$${EEOO}\:\:\checkmark \\ $$$${EEOE} \\ $$$${EEEO} \\ $$$${EEEE}\:\:\checkmark \\ $$ | ||
Commented by mr W last updated on 24/Mar/25 | ||
![]() | ||
$${only}\:{one}\:{number}\:{is}\:{even}: \\ $$$${p}=\frac{\mathrm{4}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${at}\:{least}\:{one}\:{number}\:{is}\:{even}: \\ $$$${p}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{16}}=\frac{\mathrm{15}}{\mathrm{16}} \\ $$$${all}\:{numbers}\:{are}\:{even}: \\ $$$${p}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$ | ||
Commented by Tawa11 last updated on 24/Mar/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$ | ||
Commented by Tawa11 last updated on 24/Mar/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sirs}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$ | ||
Commented by mr W last updated on 25/Mar/25 | ||
![]() | ||
$${are}\:{the}\:{answers}\:{right}? \\ $$ | ||
Commented by Tawa11 last updated on 25/Mar/25 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{sir}. \\ $$$$\mathrm{But}\:\mathrm{you}\:\mathrm{got}\:\mathrm{the}\:\mathrm{same}\:\mathrm{answer} \\ $$$$\mathrm{as}\:\mathrm{sir}\:\mathrm{frix}. \\ $$ | ||