Question Number 210362 by MATHEMATICSAM last updated on 10/Sep/24 | ||
![]() | ||
$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation} \\ $$$$\left({a}\:−\:{b}\:+\:{c}\right){x}^{\mathrm{2}} \:+\:\left({c}\:−\:{b}\:−\:{a}\right){x}\:+\:\mathrm{2}\left({b}\:−\:{c}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{real}\:\mathrm{and}\:\mathrm{equal}\:\mathrm{then}\:\mathrm{find}\:\frac{{a}}{{b}\:−\:{c}}\:. \\ $$ | ||
Commented by som(math1967) last updated on 08/Aug/24 | ||
![]() | ||
$${not}\:{qudratic}\:,{it}\:{should}\:{be}\:\left({a}−{b}+{c}\right){x}^{\mathrm{2}} \\ $$ | ||
Commented by MATHEMATICSAM last updated on 10/Sep/24 | ||
![]() | ||
$$\mathrm{oh}\:\mathrm{yes} \\ $$ | ||
Answered by som(math1967) last updated on 11/Sep/24 | ||
![]() | ||
$${let}\:\left({a}−{b}+{c}\right)={p}\:,\left({c}−{b}−{a}\right)={q} \\ $$$$\mathrm{2}\left({b}−{c}\right)={r} \\ $$$$\therefore{p}+{q}+{r}={a}−{b}+{c}+{c}−{b}−{a}+\mathrm{2}{b}−\mathrm{2}{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0} \\ $$$$\:{equation}\Rightarrow{px}^{\mathrm{2}} +{qx}+{r}=\mathrm{0} \\ $$$$\:{roots}\:{are}\:{real}\:{and}\:{equal} \\ $$$$\:\:\therefore{q}^{\mathrm{2}} =\mathrm{4}{pr} \\ $$$$\Rightarrow\left({p}+{r}\right)^{\mathrm{2}} =\mathrm{4}{pr}\:\left[\because{p}+{q}+{r}=\mathrm{0}\right] \\ $$$$\Rightarrow\left({p}−{r}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{p}−{r}=\mathrm{0}\Rightarrow{p}={r} \\ $$$$\Rightarrow\:{a}−{b}+{c}=\mathrm{2}\left({b}−{c}\right) \\ $$$$\Rightarrow{a}+{c}+\mathrm{2}{c}=\mathrm{2}{b}+{b} \\ $$$$\Rightarrow{a}=\mathrm{3}\left({b}−{c}\right) \\ $$$$\therefore\:\frac{{a}}{{b}−{c}}=\mathrm{3} \\ $$ | ||