Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210362 by MATHEMATICSAM last updated on 10/Sep/24

If the roots of the quadratic equation  (a − b + c)x^2  + (c − b − a)x + 2(b − c) = 0  are real and equal then find (a/(b − c)) .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation} \\ $$$$\left({a}\:−\:{b}\:+\:{c}\right){x}^{\mathrm{2}} \:+\:\left({c}\:−\:{b}\:−\:{a}\right){x}\:+\:\mathrm{2}\left({b}\:−\:{c}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{real}\:\mathrm{and}\:\mathrm{equal}\:\mathrm{then}\:\mathrm{find}\:\frac{{a}}{{b}\:−\:{c}}\:. \\ $$

Commented by som(math1967) last updated on 08/Aug/24

not qudratic ,it should be (a−b+c)x^2

$${not}\:{qudratic}\:,{it}\:{should}\:{be}\:\left({a}−{b}+{c}\right){x}^{\mathrm{2}} \\ $$

Commented by MATHEMATICSAM last updated on 10/Sep/24

oh yes

$$\mathrm{oh}\:\mathrm{yes} \\ $$

Answered by som(math1967) last updated on 11/Sep/24

let (a−b+c)=p ,(c−b−a)=q  2(b−c)=r  ∴p+q+r=a−b+c+c−b−a+2b−2c               =0   equation⇒px^2 +qx+r=0   roots are real and equal    ∴q^2 =4pr  ⇒(p+r)^2 =4pr [∵p+q+r=0]  ⇒(p−r)^2 =0  ⇒p−r=0⇒p=r  ⇒ a−b+c=2(b−c)  ⇒a+c+2c=2b+b  ⇒a=3(b−c)  ∴ (a/(b−c))=3

$${let}\:\left({a}−{b}+{c}\right)={p}\:,\left({c}−{b}−{a}\right)={q} \\ $$$$\mathrm{2}\left({b}−{c}\right)={r} \\ $$$$\therefore{p}+{q}+{r}={a}−{b}+{c}+{c}−{b}−{a}+\mathrm{2}{b}−\mathrm{2}{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0} \\ $$$$\:{equation}\Rightarrow{px}^{\mathrm{2}} +{qx}+{r}=\mathrm{0} \\ $$$$\:{roots}\:{are}\:{real}\:{and}\:{equal} \\ $$$$\:\:\therefore{q}^{\mathrm{2}} =\mathrm{4}{pr} \\ $$$$\Rightarrow\left({p}+{r}\right)^{\mathrm{2}} =\mathrm{4}{pr}\:\left[\because{p}+{q}+{r}=\mathrm{0}\right] \\ $$$$\Rightarrow\left({p}−{r}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{p}−{r}=\mathrm{0}\Rightarrow{p}={r} \\ $$$$\Rightarrow\:{a}−{b}+{c}=\mathrm{2}\left({b}−{c}\right) \\ $$$$\Rightarrow{a}+{c}+\mathrm{2}{c}=\mathrm{2}{b}+{b} \\ $$$$\Rightarrow{a}=\mathrm{3}\left({b}−{c}\right) \\ $$$$\therefore\:\frac{{a}}{{b}−{c}}=\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com