Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 47628 by 786786AM last updated on 12/Nov/18

If the first term and n^(th)  term of G.P.,  are a and b respectively,   p is the product of n terms. Prove that p^2  = (ab)^n .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{and}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{G}.\mathrm{P}.,\:\:\mathrm{are}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{respectively},\: \\ $$$$\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{p}^{\mathrm{2}} \:=\:\left(\mathrm{ab}\right)^{\mathrm{n}} . \\ $$$$ \\ $$$$ \\ $$

Answered by math1967 last updated on 12/Nov/18

P=a.ar.....ar^(n−1)      [r=common ratio]   P=a^n .r^(1+2+.....+(n−1))    P=a^n .r^(((n−1)(n−1+1))/2)   P=a^n .r^((n(n−1))/2)   P^2 =a^(2n) .r^(n(n−1))   P^2 =(a.ar^(n−1) )^n   ∴P^2 =(ab)^n     [∵ b=ar^(n−1) ]

$${P}={a}.{ar}.....{ar}^{{n}−\mathrm{1}} \:\:\:\:\:\left[{r}={common}\:{ratio}\right] \\ $$$$\:{P}={a}^{{n}} .{r}^{\mathrm{1}+\mathrm{2}+.....+\left({n}−\mathrm{1}\right)} \\ $$$$\:{P}={a}^{{n}} .{r}^{\frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{1}+\mathrm{1}\right)}{\mathrm{2}}} \\ $$$${P}={a}^{{n}} .{r}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} \\ $$$${P}^{\mathrm{2}} ={a}^{\mathrm{2}{n}} .{r}^{{n}\left({n}−\mathrm{1}\right)} \\ $$$${P}^{\mathrm{2}} =\left({a}.{ar}^{{n}−\mathrm{1}} \right)^{{n}} \\ $$$$\therefore{P}^{\mathrm{2}} =\left({ab}\right)^{{n}} \:\:\:\:\left[\because\:{b}={ar}^{{n}−\mathrm{1}} \right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com