Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 6655 by Tawakalitu. last updated on 09/Jul/16

If   tan2x − sin2x = b  and  tan2x + sin2x = a  prove that :   b^2  − a^(2 )  = 16ba

$${If}\:\:\:{tan}\mathrm{2}{x}\:−\:{sin}\mathrm{2}{x}\:=\:{b}\:\:{and}\:\:{tan}\mathrm{2}{x}\:+\:{sin}\mathrm{2}{x}\:=\:{a} \\ $$$${prove}\:{that}\::\: \\ $$$${b}^{\mathrm{2}} \:−\:{a}^{\mathrm{2}\:} \:=\:\mathrm{16}{ba} \\ $$

Commented by Yozzii last updated on 09/Jul/16

x=(π/8)⇒b=1−(1/(√2)) ,a=1+(1/(√2))  ⇒16ab=16(1−(1/(√2)))(1+(1/(√2)))=8  b^2 −a^2 =(b−a)(b+a)=(((−2)/(√2)))(2)=−2(√2)≠8  but (−2(√2))^2 =8⇒ (b^2 −a^2 )^2 =16ab???

$${x}=\frac{\pi}{\mathrm{8}}\Rightarrow{b}=\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:,{a}=\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{16}{ab}=\mathrm{16}\left(\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)=\mathrm{8} \\ $$$${b}^{\mathrm{2}} −{a}^{\mathrm{2}} =\left({b}−{a}\right)\left({b}+{a}\right)=\left(\frac{−\mathrm{2}}{\sqrt{\mathrm{2}}}\right)\left(\mathrm{2}\right)=−\mathrm{2}\sqrt{\mathrm{2}}\neq\mathrm{8} \\ $$$${but}\:\left(−\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{8}\Rightarrow\:\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{16}{ab}??? \\ $$

Answered by Yozzii last updated on 09/Jul/16

16ab=16(tan2x−sin2x)(tan2x+sin2x)  =16(tan^2 2x−sin^2 2x)  =16sin^2 2x((1/(cos^2 2x))−1)  =16sin^2 2x((1−cos^2 2x)/(cos^2 2x))  =16tan^2 2xsin^2 2x  =(4tan2xsin2x)^2   =((2tan2x)(2sin2x))^2   =((tan2x−sin2x+tan2x+sin2x)(tan2x−sin2x−tan2x−sin2x))^2   =((b+a)(b−a))^2   16ab=(b^2 −a^2 )^2

$$\mathrm{16}{ab}=\mathrm{16}\left({tan}\mathrm{2}{x}−{sin}\mathrm{2}{x}\right)\left({tan}\mathrm{2}{x}+{sin}\mathrm{2}{x}\right) \\ $$$$=\mathrm{16}\left({tan}^{\mathrm{2}} \mathrm{2}{x}−{sin}^{\mathrm{2}} \mathrm{2}{x}\right) \\ $$$$=\mathrm{16}{sin}^{\mathrm{2}} \mathrm{2}{x}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \mathrm{2}{x}}−\mathrm{1}\right) \\ $$$$=\mathrm{16}{sin}^{\mathrm{2}} \mathrm{2}{x}\frac{\mathrm{1}−{cos}^{\mathrm{2}} \mathrm{2}{x}}{{cos}^{\mathrm{2}} \mathrm{2}{x}} \\ $$$$=\mathrm{16}{tan}^{\mathrm{2}} \mathrm{2}{xsin}^{\mathrm{2}} \mathrm{2}{x} \\ $$$$=\left(\mathrm{4}{tan}\mathrm{2}{xsin}\mathrm{2}{x}\right)^{\mathrm{2}} \\ $$$$=\left(\left(\mathrm{2}{tan}\mathrm{2}{x}\right)\left(\mathrm{2}{sin}\mathrm{2}{x}\right)\right)^{\mathrm{2}} \\ $$$$=\left(\left({tan}\mathrm{2}{x}−{sin}\mathrm{2}{x}+{tan}\mathrm{2}{x}+{sin}\mathrm{2}{x}\right)\left({tan}\mathrm{2}{x}−{sin}\mathrm{2}{x}−{tan}\mathrm{2}{x}−{sin}\mathrm{2}{x}\right)\right)^{\mathrm{2}} \\ $$$$=\left(\left({b}+{a}\right)\left({b}−{a}\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{16}{ab}=\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 09/Jul/16

Thanks so much

$${Thanks}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com